Bibliography

1
BASHIR AL-HDAIBAT, WILLY GOVAERTS, YURI A. KUZNETSOV AND HIL G.E. MEIJER, Initialization of homoclinic solutions near Bogdanov-Takens points: Lindstedt-Poincaré compared with regular perturbation method, SIAM J. Appl. Dyn. Syst. 15(2). p.952-980 (2016).

2
E.L. ALLGOWER AND K. GEORG, Numerical Continuation Methods: An introduction, Springer-Verlag, 1990 .

3
BEYN, W.-J. 1994. Numerical analysis of homoclinic orbits emanating from a Takens-Bogdanov point. IMA J. Numerical Analysis, 14, 381-410.

4
W.J. BEYN, A. CHAMPNEYS, E. DOEDEL, W. GOVAERTS, YU.A. KUZNETSOV, AND B. SANDSTEDE, Numerical continuation and computation of normal forms. In: B. Fiedler, G. Iooss, and N. Kopell (eds.) ``Handbook of Dynamical Systems : Vol 2", Elsevier 2002, pp 149 - 219.

5
CHAMPNEYS, A.R. AND KUZNETSOV YU.A. 1994. Numerical detection and continuation of codimension-two homoclinic orbits. Int. J. Bifurcation Chaos, 4(4), 785-822.

6
CHAMPNEYS, A.R., KUZNETSOV YU.A. AND SANDSTEDE B. 1996. A numerical toolbox for homoclinic bifurcation analysis. Int. J. Bifurcation Chaos, 6(5), 867-887.

7
C. De Boor and B. Swartz, Collocation at Gaussian points, SIAM Journal on Numerical Analysis 10 (1973), pp. 582-606.

8
DEMMEL, J.W., DIECI, L. AND FRIEDMAN, M.J. 2001. Computing connecting orbits via an improved algorithm for continuing invariant subspaces. SIAM J. Sci. Comput., 22(1), 81-94.

9
V. DE WITTE, W. GOVAERTS, YU. A. KUZNETSOV AND M. FRIEDMAN, Interactive Initialization and Continuation of Homoclinic and Heteroclinic Orbits in MATLAB, ACM Transactions on Mathematical Software. Volume 38, Issue 3, Article Number: 18, DOI: 10.1145/2168773.2168776 Published: APR 2012

10
V. DE WITTE, F. DELLA ROSSA, W.GOVAERTS AND YU.A. KUZNETSOV, Numerical Periodic Normalization for Codim2 Bifurcations of Limit Cycles: Computational Formulas, Numerical Implementation, and Examples, SIAM J. Applied Dynamical Systems 12,2 (2013) 722-788. DOI: 10.1137/120874904

11
A. Dhooge, W. Govaerts and Yu. A. Kuznetsov, MATCONT : A MATLAB package for numerical bifurcation analysis of ODEs, ACM Transactions on Mathematical Software 29(2) (2003), pp. 141-164.

12
E. Doedel and J Kernévez, AUTO: Software for continuation problems in ordinary differential equations with applications, California Institute of Technology, Applied Mathematics, 1986.

13
Doedel, E.J. and Friedman, M.J.: Numerical computation of heteroclinic orbits, J. Comp. Appl. Math. 26 (1989) 155-170.

14
E.J. Doedel, A.R. Champneys, T.F. Fairgrieve, Yu.A. Kuznetsov, B. Sandstede and X.J. Wang, AUTO97-00 : Continuation and Bifurcation Software for Ordinary Differential Equations (with HomCont), User's Guide, Concordia University, Montreal, Canada (1997-2000). (http://indy.cs.concordia.ca).

15
Doedel, E.J., Govaerts W., Kuznetsov, Yu.A.: Computation of Periodic Solution Bifurcations in ODEs using Bordered Systems, SIAM Journal on Numerical Analysis 41,2(2003) 401-435.

16
Doedel, E.J., Govaerts, W., Kuznetsov, Yu.A., Dhooge, A.: Numerical continuation of branch points of equilibria and periodic orbits, Int. J. Bifurcation and Chaos, 15(3) (2005), 841-860.

17
Ermentrout, B.: Simulating, Analyzing, and Animating Dynamical Systems. Siam Publications, Philadelphia, 2002.

18
Freire, E., Rodriguez-Luis, A., Gamero E. and Ponce, E., A case study for homoclinic chaos in an autonomous electronic circuit: A trip form Takens-Bogdanov to Hopf- Shilnikov, Physica D 62 (1993) 230-253.

19
Friedman, M., Govaerts, W., Kuznetsov, Yu.A. and Sautois, B. 2005. Continuation of homoclinic orbits in MATLAB. Lecture Notes in Computer Science, 3514, 263-270.

20
Genesio, R. and Tesi, A. Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems. Automatica 28 (1992), 531-548.

21
Genesio, R., Tesi, A., and Villoresi, F. Models of complex dynamics in nonlinear systems. Systems Control Lett. 25 (1995), 185-192.

22
W.J.F. Govaerts, Numerical Methods for Bifurcations of Dynamical Equilibria, SIAM, 2000.

23
Govaerts, W. and Sautois, B.: Phase response curves, delays and synchronization in MATLAB. Lecture Notes in Computer Science, 3992 (2006), 391-398.

24
Govaerts, W. and Sautois, B.: Computation of the phase response curve: a direct numerical approach. Neural Comput. 18(4) (2006), 817-847.

25
KOPER, M. 1995. Bifurcations of mixed-mode oscillations in a three-variable autonomous Van der Pol-Duffing model with a cross-shaped phase diagram. Phys. D, 80, 72-94.

26
Yu. A. Kuznetsov, Elements of Applied Bifurcation Theory, Springer-Verlag, 1998. (third edition 2004).

27
Yu. A. Kuznetsov and V.V. Levitin, CONTENT: Integrated Environment for analysis of dynamical systems. CWI, Amsterdam 1997: ftp://ftp.cwi.nl/pub/CONTENT

28
MATLAB, The Mathworks Inc., http://www.mathworks.com.

29
YU. A. KUZNETSOV, W. GOVAERTS, E.J. DOEDEL AND A. DHOOGE, Numerical periodic normalization for codim 1 bifurcations of limit cycles, SIAM J. Numer. Anal. 43 (2005) 1407-1435.

30
YU.A. KUZNETSOV, H.G.E. MEIJER, W. GOVAERTS AND B. SAUTOIS, Switching to nonhyperbolic cycles from codim 2 bifurcations of equilibria in ODEs, Physica D 237 No. 23 (2008) 3061-3068 (ISSN 0167-2789).

31
KUZNETSOV, YU.A., MEIJER H.G.E., AL HDAIBAT, B. AND GOVAERTS, W., Improved homoclinic predictor for Bogdanov-Takens Bifurcation, International Journal of Bifurcations and Chaos, 24(4) (2014). Article Number: 1450057. DOI: 10.1142/S0218127414500576

32
YU.A. KUZNETSOV, H.G.E. MEIJER, B. AL-HDAIBAT AND W. GOVAERTS, Accurate Approximation of Homoclinic Solutions in Gray-Scott Kinetic Model. International Journal of Bifurcation and Chaos, Volume: 25(9) August 2015. Article Number: 1550125
DOI: 10.1142/S0218127415501254

33
W. Mestrom, Continuation of limit cycles in MATLAB, Master Thesis, Mathematical Institute, Utrecht University, The Netherlands, 2002.

34
Morris, C., Lecar,H., Voltage oscillations in the barnacle giant muscle fiber,Biophys J. 35 (1981) 193-213.

35
A. Riet, A Continuation Toolbox in MATLAB, Master Thesis, Mathematical Institute, Utrecht University, The Netherlands, 2000.

36
D. Roose et al., Aspects of continuation software, in : Continuation and Bifurcations: Numerical Techniques and Applications, (eds. D. Roose, B. De Dier and A. Spence), NATO ASI series, Series C, Vol. 313, Kluwer 1990, pp. 261-268.

37
C. Stéphanos, Sur une extension du calcul des substitutions linéaires, J. Math. Pures Appl. 6 (1900) 73-128.

38
Terman, D., Chaotic spikes arising from a model of bursting in excitable membranes, Siam J. Appl. Math. 51 (1991) 1418-1450.

39
Terman, D., The transition from bursting to continuous spiking in excitable membrane models, J. Nonlinear Sci. 2, (1992) 135-182.