TUTORIAL V:

Continuation of homoclinic orbits with MATCONT

Yu.A. Kuznetsov Department of Mathematics Utrecht University Budapestlaan 6 3508 TA, Utrecht This session is devoted to location and continuation of orbits homoclinic to hyperbolic equilibria in autonomous systems of ODEs depending on two parameters

$$\dot{u} = f(u, \alpha), \quad u \in \mathbb{R}^n, \alpha \in \mathbb{R}^2$$

and to detection of their codim 2 bifurcations.

1 Traveling pulses in the FitzHugh-Nagumo model

The following system of partial differential equations is the FitzHugh-Nagumo model of the nerve impulse propagation along an axon:

$$\begin{cases} \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} - f_a(u) - v, \\ \frac{\partial v}{\partial t} = bu, \end{cases}$$
(1)

where u = u(x, t) represents the membrane potential; v = v(x, t) is a phenomenological "recovery" variable; $f_a(u) = u(u-a)(u-1), 1 > a > 0, b > 0, -\infty < x < +\infty, t > 0.$

Traveling waves are solutions to these equations of the form

$$u(x,t) = U(\xi), v(x,t) = V(\xi), \xi = x + ct,$$

where c is an a priori unknown wave propagation speed. The functions $U(\xi)$ and $V(\xi)$ satisfy the system of three ordinary differential equations

$$\begin{cases} \dot{U} = W, \\ \dot{W} = cW + f_a(U) + V, \\ \dot{V} = -\frac{b}{c}U, \end{cases}$$

$$(2)$$

where the dot means differentiation with respect to "time" ξ . System (2) is called a *wave system*. It depends on three positive parameters (a, b, c). Any bounded orbit of (2) corresponds to a traveling wave solution of the FitzHugh-Nagumo system (1) at parameter values (a, b) propagating with velocity c.

For all c > 0 the wave system has a unique equilibrium 0 = (0, 0, 0) with one positive eigenvalue λ_1 and two eigenvalues $\lambda_{2,3}$ with negative real parts. The equilibrium can be either a saddle or a saddle-focus and has in both cases a one-dimensional unstable and a two-dimensional stable invariant manifolds $W^{u,s}(0)$. The transition between saddle and saddle-focus cases is caused by the presence of a double negative eigenvalue; for fixed b > 0 this happens on the curve

$$D_b = \{(a,c): c^4(4b - a^2) + 2ac^2(9b - 2a^2) + 27b^2 = 0\}$$

A branch $W_1^u(0)$ of the unstable manifold leaving the origin into the positive octant can return back to the equilibrium, forming a homoclinic orbit Γ_0 at some parameter values. For b > 0, these parameter values form a curve $P_b^{(1)}$ in the (a, c)-plane that can only be found

For b > 0, these parameter values form a curve $P_b^{(1)}$ in the (a, c)-plane that can only be found numerically. As we shall see, this curve passes through the saddle-focus region delimited by D_b . Any homoclinic orbit defines a traveling *impulse*. The shape of the impulse depends on the type of the corresponding equilibrium: It has a monotone "tail" in the saddle case and an oscillating "tail" in the saddle-focus case.

The saddle quantity $\sigma_0 = \lambda_1 + \text{Re } \lambda_{2,3}$ is always positive for c > 0. Therefore, the phase portraits of (2) near the homoclinic curve $P_b^{(1)}$ are described by Shilnikov's Theorems. In particular, near the homoclinic bifurcation curve $P_b^{(1)}$ in the saddle-focus region, system (2) has an infinite number of saddle cycles. These cycles correspond to *periodic wave trains* in the FitzHugh-Nagumo model (1). Secondary homoclinic orbits existing in (2) near the primary saddle-focus homoclinic bifurcation correspond to *double traveling impulses* in (1). An infinite number of the corresponding secondary homoclinic bifurcation curves $P_{b,j}^{(2)}$ in (2) originate at each point $A_{1,2}$, where $P_b^{(1)}$ intersects D_b .

We will locate a critical value of c for a = 0.15 and b = 0.0025, at which (2) has a homoclinic orbit, continue this homoclinic orbit with respect to the parameters (a, c), and detect the codim 2 bifurcations points $A_{1,2}$ in $P_b^{(1)}$.

2 System specification

Start a version of MATCONT that supports homoclinic continuation, and specify a new ODE system with the coordinates (U,W,V) and time t^1 :

U'=W W'=cc*W+U*(U-aa)*(U-1.0)+V V'=bb*U/cc

The parameters a, b, c are denoted by **aa,bb,cc**, respectively. Generate the derivatives of order 1,2, and 3 symbolically.

3 Location of a homoclinic orbit by homotopy

This consists of several steps, each presented in a separate subsection.

3.1 Approximating the unstable manifold by integration

Select Type |Initial point | Equilibrium and Type | Curve | ConnectionSaddle.

In the appearing **Integrator** window, increase the integration **Interval** to 20 (see the right panel of Figure 1).

Via the **Starter** window, input the initial values of the system parameters

¹Due to MATLAB restrictions, the name \mathtt{xi} cannot be used here !

🚺 Starter 🍭	
	Initial Point 🛛 🔠
t	0
U	0
W	0
V	0
aa	0.15
bb	0.0025
cc	0.2
UParam1	-1
UParam2	0
eps0	0.01
Sel	ect Connection

📣 Integrator 🎐 🚽				
Integration data				
Method	ode45 🛛 🗡			
Interval	20]			
InitStepsize	<automatic></automatic>			
MaxStepsize	<automatic></automatic>			
Rel. Tolerance	1e-3			
Abs. Tolerance	1e-6			
Refine	1			
Normcontrol	No 🔰			

Figure 1: Starter and Integrator windows for the integration of the unstable manifold.

aa	0.15
bb	0.0025
CC	0.2

as well as

Uparam1	-1
eps0	0.01

that specify direction and distance of the displacement from the saddle

x0_U	0
xO_W	0
x0_V	0

along the unstable eigenvector². The **Starter** window should look like in left panel of Figure 1.

Open a **2Dplot** window with **Window**|**Graphic**|**2Dplot**. Select U and V as variables along the corresponding axes and input the following plotting region

Abscissa:	-0.2	0.5
Ordinate:	-0.05	0.1

Start **Compute**|**Forward**. You will get an orbit approximating the unstable manifold that departs from the saddle in a nonmonotone way, see Figure 2. This orbit does not resemble a

²Uparam2 is only used when dim $W^u = 2$. On some platforms, Uparam1=1 should be used to select the correct direction.

Figure 2: A segment of the unstable manifold of the saddle at the initial parameter values.

homoclinic orbit.

Press Select Connection button in the Starter window. MATCONT will search for a point in the computed orbit where the distance to the *stable* eigenspace of the Jacobian matrix of the saddle is stopped decreasing for the last time. This point is selected as the end-point of the initial connecting orbit (as we shall see, it corresponds to the time-interval T=8.40218. The program will ask to choose the BVP-discretization parameters ntst and ncol that will be used in all further continuations. Set ntst equal to 50 and keep ncol equal to 4 (Figure 3). Press OK.

🛃 Choose ntst and ncol 🎱 📃 🗙			
Enter the number of test intervals			
50			
Enter the number of collocation points			
4			
OK Cancel			

Figure 3: The discretization parameters for homotopy BVPs.

3.2 Homotopy towards the stable eigenspace

In the new **Starter** window, activate the parameters cc, **SParam1**, and **eps1** (see Figure 4), and **Compute**|**Backward**. A family of curves will be produced by continuation (see Figure 5) and the message

SParam equal to zero

will indicate that the end-point has arrived at the stable eigenspace of the saddle (i.e. reached the plane tangent to the stable invariant manifold at the saddle and given by the condition Param1=0). The corresponding orbit segment is labled HTHom. Stop the continuation there.

🛃 Starter 🥮				×
	Initial Point			
Jaa	0.15			
Jbb	0.0025			
(€ cc	0.2			
Conne	ction parameters			
JUParam1	-1			
(€ SParam1	0.6256789			
Homo	clinic parameters			
τι	8.40218			
œeps1	0.065573			
eps1 tolerance				
eps1tol	0.01			
Jacobian Data				
increment	1e-05			
Discretization Data				
ntst	50			
ncol	4			$\overline{\nabla}$

Figure 4: Starter window for the homotopy towards the stable eigenspace.

Figure 5: The unstable manifold with the end-point in the stable eigenspace of the saddle.

3.3 Homotopy of the end-point towards the saddle

The obtained segment is still far from the homoclinic orbit but can be selected as the initial point for a homotopy of the end-point towards the saddle. Select

2) HTHom: SParam equal to zero

via Select |Initial point menu.

In the **Continuer** window, set MaxStepsize to 0.5, see in the right panel of Figure 6.

🛃 Starter 🎐			🚺 Continuer 🍭	
	Initial Point	\square		
Jaa	0.15		Continuation	Data
∋bb	0.0025		InitStepsize	0.01
(● cc	0.21581063		MinStepsize	1e-5
Conne	ection parameters		MaxStepsize	0.5
_)UParam1	-1		Corrector E	Data
SParam1)	0		MaxNewtonIters	3
Homo	clinic parameters		MaxCorriters	10
€T	8.40218		MaxTestIters	10
(€eps1	0.080189		VarTolerance	10.6
et	ps1 tolerance			16-0
eps1tol	0.01		Funlolerance	1e-6
Ja	acobian Data		TestTolerance	1e-5
increment	1e-05		Adapt	3
Discretization Data			Stop Data	
ntst	50		MaxNumPoints	300
ncol	4		ClosedCurve	50

Figure 6: Starter and Integrartor windows for the homotopy towards the saddle.

In the **Starter** window, **SParam1** now equals to zero, while the parameter cc is adjusted. Activate parameters cc, T, and eps1 there. Set eps1tol equal to 0.01; this will be used as the target distance eps1 from the end-point to the saddle.

Open a **Numeric** window to monitor the values of the active parameters. Clean the **2DPlot** window and **Compute** | **Forward**. You should get Figure 7, where the last computed segment is again labled by HTHom. The message

eps1 small enough

appears in the main window and indicates that a good approximation of the homoclinic orbit is found. The begin- and the end-points are now both located near the saddle (at distance 0.01). The **Numeric** window at the last computed point is presented in Figure 8. It can be seen that the eps1 became 0.01, while the time-interval T increased to 36.6206. Stop the continuation.

3.4 Continuation of the homoclinic orbit

Select just computed

2) HTHom: eps1 small enough

via **Select**|**Initial point** menu as the initial data. Select **Type**|**Curve**|**Homoclinic to Saddle** and check that the curve type is Hom, while the initial point is of type HTHom.

In the new **Starter** window, activate two system parameters: **aa** and **cc** as well as the homoclinic parameter T (see Figure 9). These parameters will vary along the homoclinic curve, while

Figure 7: The homotopy results in the manifold segment with both the begin- and the end-points near the saddle.

🛃 Num	eric	
Window		Ľ
	Parameters	Δ
aa	0.15	_
bb	0.0025	_
cc	0.21377962	_
	Homoclinic parameters	_
Т	36.6206	_
eps1	0.01	_
	Connection parameters	_
SParan	n1 0	
		V

Figure 8: Numeric window at the last point of the homotopy towards the saddle.

🚺 Starter 🍭			_	X
	Initial	Point		 /
(@ aa	0.15			
Jbb	0.0025	5		
€ cc	0.2137	7962		
Homocli	nic par	ameters		
ίT	36.620)6	_	
)eps0	0.01		_	
Jeps1	0.01 biop D	ata		
jaco		ala	_	
Discret	izatior	n Data		
ntst	50	, Data		
ncol	4		=	
Mon	itor Sir	ngularities		
Neutral s, sf, o	r ff	no	7	
Double SL-eige	nvalue	yes	7	
Double UL-eige	nvalue	no	7	
Zero-divergent	Ssf	no	7	
Zeri–divergent	Usf	no	7	
Three SL-eigen	values	no	7	
Three UL-eigen	values	no	7	
Shilnikov-Hopf		no	7	
Non-central HS	N	no	7	
Bogdanov-Take	ens	no	7	
Orbit-flip (SM)		no	7	
Orbit-flip (UM)		no	7	
Inclination-flip	(SM)	no	7	
Inclination-flip	(UM)	no	7	

Figure 9: **Starter** window for the two-parameter homoclinic continuation.

both eps0 and eps1 (the begin- and end-distances to the saddle) will be fixed, see Figure 9. Also, choose Yes to detect the singularity Double SL-eigenvalue (*double stable leading eigenvalue*) along the homoclinic curve.

In the **Continuer** window, increase the MaxStepsize to 1.

Change the attributes of the 2Dplot window: Select aa and cc as the abscissa and ordinate with the visibility limits

Abscissa:	0	0.3
Ordinate:	0	0.8

Now you are ready to start the continuation. **Compute** Forward and Backward, resume computations at special points, and terminate them when the computed points leave the positive quadrant of the (a, c)-plane. Two special points will be detected, where the equilibrium undergoes the saddle-to-saddle-focus transition. These are codim 2 bifurcation points $A_{1,2}$ introduced in Section 1.

Delete all previously computed curves except the last two, namely

HTHom_Hom(1) HTHom_Hom(1)

and Plot Redraw diagram. This should produce Figure 10.

Figure 10: The homoclinic bifurcation curve in the (a, c)-plane. The saddle to saddle-focus transitions $A_{1,2}$ are labled by DRS.

Figure 11: The family of homoclinic homoclinic orbits in the phase space of system (2) for b = 0.0025.

To verify that that all computed points indeed correspond to homoclinic orbits, open a 3Dplot window and select U, W and V as variables along the coordinate axes with the visibility limits

Abscissa: Ordinate:	-0.4 -0.15	1.2 0.15

respectively. **Plot** | **Redraw diagram** in this new window should produce Figure 11 after an appropriate rotation.

4 Additional Problems

A. Consider the famous Lorenz system

 $\begin{cases} \dot{x} &= \sigma(-x+y), \\ \dot{y} &= rx - y - xz, \\ \dot{z} &= -bz + xy, \end{cases}$

with the standard parameter value $b = \frac{8}{3}$. Use MATCONT to analyse its homoclinic bifurcations:

- 1. Locate at $\sigma = 10$ the bifurcation parameter value r_{Hom} corresponding to the primary orbit homoclinic to the origin. *Hint*: Use homotopy starting from r = 15.5.
- 2. Compute the primary homoclinic bifurcation curve in the (r, σ) -plane for $b = \frac{8}{3}$. Try to reach r = 100 and $\sigma = 100$.
- 3. Locate and continue in the same (r, σ) -plane several secondary homoclinic to the origin orbits in the Lorenz system. *Hint*: These orbits make turns around both nontrivial equilibria. The simplest one can be found starting from $(\sigma, r) = (10, 55)$.
- B. Study with MATCONT homoclinic bifurcations in the adaptive control system of Lur'e type:

$$\begin{cases} \dot{x} &= y, \\ \dot{y} &= z, \\ \dot{z} &= -\alpha z - \beta y - x + x^2, \end{cases}$$

where α and β are parameters.