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This session is devoted to location and continuation of orbits homoclinic to hyperbolic equilibria
in autonomous systems of ODEs depending on two parameters

u̇ = f(u, α), u ∈ R
n, α ∈ R

2,

and to detection of their codim 2 bifurcations.

1 Traveling pulses in the FitzHugh-Nagumo model

The following system of partial differential equations is the FitzHugh-Nagumo model of the nerve
impulse propagation along an axon:















∂u

∂t
=

∂2u

∂x2
− fa(u)− v,

∂v

∂t
= bu,

(1)

where u = u(x, t) represents the membrane potential; v = v(x, t) is a phenomenological “recovery”
variable; fa(u) = u(u− a)(u− 1), 1 > a > 0, b > 0, −∞ < x < +∞, t > 0.

Traveling waves are solutions to these equations of the form

u(x, t) = U(ξ), v(x, t) = V (ξ), ξ = x+ ct,

where c is an a priori unknown wave propagation speed. The functions U(ξ) and V (ξ) satisfy the
system of three ordinary differential equations











U̇ = W,

Ẇ = cW + fa(U) + V,

V̇ =
b

c
U,

(2)

where the dot means differentiation with respect to “time” ξ. System (2) is called a wave system. It
depends on three positive parameters (a, b, c). Any bounded orbit of (2) corresponds to a traveling
wave solution of the FitzHugh-Nagumo system (1) at parameter values (a, b) propagating with
velocity c.

For all c > 0 the wave system has a unique equilibrium 0 = (0, 0, 0) with one positive eigenvalue
λ1 and two eigenvalues λ2,3 with negative real parts. The equilibrium can be either a saddle or
a saddle-focus and has in both cases a one-dimensional unstable and a two-dimensional stable
invariant manifolds Wu,s(0). The transition between saddle and saddle-focus cases is caused by
the presence of a double negative eigenvalue; for fixed b > 0 this happens on the curve

Db = {(a, c) : c4(4b− a2) + 2ac2(9b− 2a2) + 27b2 = 0}.

A branch Wu
1 (0) of the unstable manifold leaving the origin into the positive octant can return

back to the equilibrium, forming a homoclinic orbit Γ0 at some parameter values.

For b > 0, these parameter values form a curve P
(1)
b in the (a, c)-plane that can only be found

numerically. As we shall see, this curve passes through the saddle-focus region delimited by Db.
Any homoclinic orbit defines a traveling impulse. The shape of the impulse depends on the type
of the corresponding equilibrium: It has a monotone “tail” in the saddle case and an oscillating
“tail” in the saddle-focus case.

The saddle quantity σ0 = λ1 + Re λ2,3 is always positive for c > 0. Therefore, the phase por-

traits of (2) near the homoclinic curve P
(1)
b are described by Shilnikov’s Theorems. In particular,

near the homoclinic bifurcation curve P
(1)
b in the saddle-focus region, system (2) has an infinite

number of saddle cycles. These cycles correspond to periodic wave trains in the FitzHugh-Nagumo
model (1). Secondary homoclinic orbits existing in (2) near the primary saddle-focus homoclinic
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bifurcation correspond to double traveling impulses in (1). An infinite number of the correspond-

ing secondary homoclinic bifurcation curves P
(2)
b,j in (2) originate at each point A1,2, where P

(1)
b

intersects Db.
We will locate a critical value of c for a = 0.15 and b = 0.0025, at which (2) has a homoclinic

orbit, continue this homoclinic orbit with respect to the parameters (a, c), and detect the codim

2 bifurcations points A1,2 in P
(1)
b .

2 System specification

Start a version of matcont that supports homoclinic continuation, and specify a new ODE system
with the coordinates (U,W,V) and time t1:

U’=W

W’=cc*W+U*(U-aa)*(U-1.0)+V

V’=bb*U/cc

The parameters a, b, c are denoted by aa,bb,cc, respectively. Generate the derivatives of order
1,2, and 3 symbolically.

3 Location of a homoclinic orbit by homotopy

This consists of several steps, each presented in a separate subsection.

3.1 Approximating the unstable manifold by integration

Select Type|Initial point|Equilibrium and Type|Curve|ConnectionSaddle.
In the appearing Integrator window, increase the integration Interval to 20 (see the right

panel of Figure 1).
Via the Starter window, input the initial values of the system parameters

1Due to MATLAB restrictions, the name xi cannot be used here !

Figure 1: Starter and Integrartor windows for the integration of the unstable manifold.
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aa 0.15

bb 0.0025

cc 0.2

as well as

Uparam1 -1

eps0 0.01

that specify direction and distance of the displacement from the saddle

x0_U 0

x0_W 0

x0_V 0

along the unstable eigenvector2. The Starter window should look like in left panel of Figure 1.
Open a 2Dplot window with Window|Graphic|2Dplot. Select U and V as variables along

the corresponding axes and input the following plotting region

Abscissa: -0.2 0.5

Ordinate: -0.05 0.1

Start Compute|Forward. You will get an orbit approximating the unstable manifold that
departs from the saddle in a nonmonotone way, see Figure 2. This orbit does not resemble a

2Uparam2 is only used when dimW
u = 2. On some platforms, Uparam1=1 should be used to select the correct

direction.
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Figure 2: A segment of the unstable manifold of the saddle at the initial parameter values.
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homoclinic orbit.
Press Select Connection button in the Starter window. matcont will search for a point

in the computed orbit where the distance to the stable eigenspace of the Jacobian matrix of the
saddle is stopped decreasing for the last time. This point is selected as the end-point of the initial
connecting orbit (as we shall see, it corresponds to the time-interval T=8.40218. The program will
ask to choose the BVP-discretization parameters ntst and ncol that will be used in all further
continuations. Set ntst equal to 50 and keep ncol equal to 4 (Figure 3). Press OK.

Figure 3: The discretization parameters for homotopy BVPs.

3.2 Homotopy towards the stable eigenspace

In the new Starter window, activate the parameters cc, SParam1, and eps1 (see Figure 4), and
Compute|Backward. A family of curves will be produced by continuation (see Figure 5) and
the message

SParam equal to zero

will indicate that the end-point has arrived at the stable eigenspace of the saddle (i.e. reached
the plane tangent to the stable invariant manifold at the saddle and given by the condition
SParam1=0). The corresponding orbit segment is labled HTHom. Stop the continuation there.

Figure 4: Starter window for the homotopy towards the stable eigenspace.
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Figure 5: The unstable manifold with the end-point in the stable eigenspace of the saddle.
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3.3 Homotopy of the end-point towards the saddle

The obtained segment is still far from the homoclinic orbit but can be selected as the initial point
for a homotopy of the end-point towards the saddle. Select

2) HTHom: SParam equal to zero

via Select|Initial point menu.
In the Continuer window, set MaxStepsize to 0.5, see in the right panel of Figure 6.

Figure 6: Starter and Integrartor windows for the homotopy towards the saddle.

In the Starter window, SParam1 now equals to zero, while the parameter cc is adjusted.
Activate parameters cc, T, and eps1 there. Set eps1tol equal to 0.01; this will be used as the
target distance eps1 from the end-point to the saddle.

Open a Numeric window to monitor the values of the active parameters. Clean the 2DPlot

window and Compute | Forward. You should get Figure 7, where the last computed segment
is again labled by HTHom. The message

eps1 small enough

appears in the main window and indicates that a good approximation of the homoclinic orbit is
found. The begin- and the end-points are now both located near the saddle (at distance 0.01).
The Numeric window at the last computed point is presented in Figure 8. It can be seen that
the eps1 became 0.01, while the time-interval T increased to 36.6206. Stop the continuation.

3.4 Continuation of the homoclinic orbit

Select just computed

2) HTHom: eps1 small enough

via Select|Initial point menu as the initial data. Select Type|Curve|Homoclinic to Saddle

and check that the curve type is Hom, while the initial point is of type HTHom.
In the new Starter window, activate two system parameters: aa and cc as well as the homo-

clinic parameter T (see Figure 9). These parameters will vary along the homoclinic curve, while
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Figure 7: The homotopy results in the manifold segment with both the begin- and the end-points
near the saddle.

Figure 8: Numeric window at the last point of the homotopy towards the saddle.
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Figure 9: Starter window for the two-parameter homoclinic continuation.
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both eps0 and eps1 (the begin- and end-distances to the saddle) will be fixed, see Figure 9. Also,
choose Yes to detect the singularity Double SL-eigenvalue (double stable leading eigenvalue)
along the homoclinic curve.

In the Continuer window, increase the MaxStepsize to 1.
Change the attributes of the 2Dplot window: Select aa and cc as the abscissa and ordinate

with the visibility limits

Abscissa: 0 0.3

Ordinate: 0 0.8

Now you are ready to start the continuation. Compute|Forward and Backward, resume
computations at special points, and terminate them when the computed points leave the positive
quadrant of the (a, c)-plane. Two special points will be detected, where the equilibrium undergoes
the saddle-to-saddle-focus transition. These are codim 2 bifurcation points A1,2 introduced in
Section 1.

Delete all previously computed curves except the last two, namely

HTHom_Hom(1)

HTHom_Hom(1)

and Plot|Redraw diagram. This should produce Figure 10.
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Figure 10: The homoclinic bifurcation curve in the (a, c)-plane. The saddle to saddle-focus tran-
sitions A1,2 are labled by DRS.
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Figure 11: The family of homoclinic homoclinic orbits in the phase space of system (2) for b =
0.0025.
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To verify that that all computed points indeed correspond to homoclinic orbits, open a 3Dplot

window and select U,W and V as variables along the coordinate axes with the visibility limits

Abscissa: -0.4 1.2

Ordinate: -0.15 0.15

Applicate: -0.01 0.2

respectively. Plot | Redraw diagram in this new window should produce Figure 11 after an
appropriate rotation.

4 Additional Problems

A. Consider the famous Lorenz system







ẋ = σ(−x+ y),
ẏ = rx − y − xz,

ż = −bz + xy,

with the standard parameter value b = 8
3 . Use matcont to analyse its homoclinic bifurca-

tions:

1. Locate at σ = 10 the bifurcation parameter value rHom corresponding to the primary
orbit homoclinic to the origin. Hint: Use homotopy starting from r = 15.5.

2. Compute the primary homoclinic bifurcation curve in the (r, σ)-plane for b = 8
3 . Try

to reach r = 100 and σ = 100.

3. Locate and continue in the same (r, σ)-plane several secondary homoclinic to the origin
orbits in the Lorenz system. Hint: These orbits make turns around both nontrivial
equilibria. The simplest one can be found starting from (σ, r) = (10, 55).

B. Study with matcont homoclinic bifurcations in the adaptive control system of Lur’e type:







ẋ = y,

ẏ = z,

ż = −αz − βy − x+ x2,

where α and β are parameters.
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