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This session is devoted to the numerical continuation of equlibria in systems of autonomous ODEs
depending on one parameter

u̇ = f(u, α), u ∈ Rn, α ∈ R,

and detection of their bifurcations.

1 An ecological model with multiple equilibria and limit
points

Consider the following system appearing in mathematical ecology:
ẋ = rx(1− x)− xy

x+ a
,

ẏ = −cy +
xy

x+ a
− dy2

y2 + b2
.

(1)

Fix
r = 2, a = 0.6, b = c = 0.25,

and consider d as a bifurcation parameter with initial value d = 0.1. The aim is to locate equilibria
of (1) and study their dependence on d.

1.1 System specification

Figure 1: The ecological model.
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Start matcont, choose Select|System|New, and input a new ODE system – say EcoMod –
into matcont as shown in Figure 1.

1.2 Locate an equilibrium by numerical integration

Select Type|Initial point|Point and check that the default Type|Curve|Orbit is selected.
In the appearing Integrator window, increase the integration Interval to 200 and set Rel.Tolerance

to 1e-7 and Abs.Tolerance to 1e-10 (to assure smaller integration steps).
Via the Starter window, input the initial point

X 1.2

Y 1

and the initial values of the parameters, namely

RR 2

AA 0.6

BB 0.25

CC 0.25

DD 0.1

Open a 2Dplot window withWindow|Graphic|2Dplot. Select X and Y as variables along the
corresponding axes and input – after clicking Layout|Plotting region – the following visibility
limits

Abscissa: 0 1.2

Ordinate: 0 2.0

Start Compute|Forward. You will get an orbit converging to an equilibrium, see Figure 2
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Figure 2: Phase orbits approaching a stable equilibrium for d = 0.1
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To see how the coordinates vary along the orbit, select Window|Numeric which opens a
Numeric window. Then input another initial point in the Starter window

X 1.0

Y 0.001

and Compute|Forward. You get the second orbit from Figure 2 tending to the same equilibrium,
whose (approximate) coordinates can be seen in the Numeric window shown in Figure 3. Close

Figure 3: The coordinates of the stable equilibrium.

the Numeric window.

1.3 Equilibrium curve

We can continue the equilibrium found by integration with respect to the parameter d (i.e. DD).

Figure 4: Initial points window.

For this, open the Initial points window with Select|Initial point and choose the last
point of the orbit P O(1) (click to highlight and then press Select button, see Figure 4). To
tell matcont to continue an equilibrium curve, we have to specify the initial point type and the
curve type. Selecting Type|Initial point|Equilibrium we set the point type EP and the same
(default) curve type, so that we prepare to compute the EP EP equilibrium curve, as indicated in
the main MatCont window. Two new windows appear: Starter and Continuer.
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Figure 5: Starter window for the equilibrium continuation: Parameter DD is activated.

Figure 6: Continuation parameters in the Continuer window.

5



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1

1.5

DD

Y

LPLP

LPLP

H H 

Figure 7: Equilibrium manifold in the (d, y)-plane: LP’s denote limit points, H is a Hopf point.

The initial values of the parameters and the equilibrium coordinates are visible in the Starter
window. Press the radio-button next to parameter DD, indicating that it will be a bifurcation
parameter (i.e. activate parameter d). The resulting Starter window is shown in Figure 5. There
you can also see which singularities will be monitored, and whether the equilibrium eigenvalues
will be computed.

In the Continuer window, several default numerical parameters related to the continuation
are listed. Change only

MaxStepsize 0.02

MaxNumPoints 100

(see Figure 6).
Use Layout menu in the 2Dplot window to select the parameter DD as abscissa and the

coordinate Y along as ordinate with the visibility limits

Abscissa: 0 0.5

Ordinate: 0 1.5

Now Compute|Forward and Compute|Backward to get a sigmoidal curve as in Figure 7.
Along the forward branch, matcont stops at two limit points labeled LP. You can Resume the
computation at these points in the small control window. Along the backward branch, matcont
stops at a Hopf point labeld H. Terminate the computation by pressing Stop there.

To determine stability of the equilibria and read the bifurcation parameter values, open
Window|Numeric and select Window|Layout in the Numeric window. Click eigenvalues

turning them into EIGENVALUES, see Figure 8. This makes the eigenvalues of the equilibrium
visible in the Numeric window (upon resizing it).
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Figure 8: Show eigenvalues in the Numeric window.

Figure 9: Numeric windows at the first and second limit point.

Figure 10: Pause at each computed point.
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Clear the 2Dplot window with Plot|Clear and repeat Compute|Forward. In the Numeric
window you can read the LP parameters:

d2 = 0.256805 . . . , d1 = 0.176927 . . .

(see Figure 9). One eigenvalue (close to) zero is also present in each case. The existence of three
equilibria for d ∈ (d1, d2) is evident from the figure.

In the MATLAB Command Window, the value of the fold normal form coefficient a is shown
at each limit point:

label = LP, x = ( 0.619532 0.927986 0.256805 )

a=-5.311546e-01

label = LP, x = ( 0.911266 0.268200 0.176927 )

a=5.681504e-01

Finally, clear the 2Dplot window once more and recompute the equilibrium curve forward with
Options|Pause mode selected as shown in Figure 10. Resume computations after each computed
point and monitor the eigenvalues in the Numeric window. You should see that, indeed, the
upper and lower branches correspond to linearly stable equilibria (with all Re λi < 0), while the
middle branch correspond to a linear saddle (with λ1 < 0 < λ2).
Since a ̸= 0 to within numerical accuracy, the equilibrium curve is approximately a (scaled)
parabola near each of them.

Restore the original pause option (At special points) via Option|Pause and close the
Numeric window.
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Figure 11: Two stable equilibria (a focus and a node) and a saddle in the ecological model at
d = 0.2. The stable manifold of the saddle separates the domain of attraction of the focus from
that of the node.
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1.4 Phase portrait

To verify our conclusions, compute several orbits to get a phase portrait of the system at d = 0.2
as in Figure 11. Start always at x = 1.2 but with different y’s.

2 Limit and branching points in a discretization of Bratu-
Gelfand PDE

Consider the following evolution problem for u = u(x, t) with x ∈ [0, 1], t ≥ 0:

ut = uxx + λeu, u(0) = u(1) = 0, (2)

where λ is a parameter. It is called the Bratu-Gelfand problem. In this section we study the
behaviour of the stationary solution to (2) as function of λ using a finite-difference approximation
over an equidistant mesh. One such time-independent solution is obvious: u ≡ 0 for λ = 0.

2.1 Discretization

Characterize a solution to (2) at time t by its values ui(t) = u(xi, t) at the uniformly distributed
mesh points

xi = ih, h =
1

N + 1
, i = 0, 1, . . . , N,N + 1,

for some N > 1. Then approximate the spatial derivative in (2) by finite differences at the inner
points

u̇i(t) =
ui−1(t)− 2ui(t) + ui+1(t)

h2
+ λ exp(ui) = 0, i = 0, 1, 2, . . . , N, (3)

and add the boundary conditions in the form{
u0(t) = 0,

uN+1(t) = 0.
(4)

After elimination u0(t) and uN+1(t), the equations (3) and (4) take the form of the ODE-system

U̇ = F (U, λ), (5)

where U = (u1, u2, . . . , uN ) and F : RN+1 × R → RN+1 is given by (3). An equilibrium of this
system approximates a stationary solution to (2) with the O(h2)-accuracy.

In this section, we will study a crude spatial discretization of (2) with only two internal points
(i.e. N = 2 and h = 1

3 ), so that (5) becomes{
u̇1 = −2u1 + u2 + αeu1 ,
u̇2 = u1 − 2u2 + αeu2 ,

(6)

where α = h2λ = 1
9λ and time is also scaled. The system (6) has a Z2-symmetry: It is invariant

under the involution (u1, u2) 7→ (u2, u1).
We will compute the equilibrium manifold of (6) in the (u1, u2, α)-space starting from point

(0, 0, 0) corresponding to the trivial stationary solution of (2), namely u(x, t) ≡ 0.

2.2 System specification

Input a new ODE system into matcont, namely

u1’=-2*u1+u2+alpha*exp(u1)

u2’=u1-2*u2+alpha*exp(u2)

and choose to generate the partial derivatives of order 1 and 2 symbolically.
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Figure 12: The curve of symmetric equilibria of (6) with limit point LP, neutral saddle H, and
branching point BP.

2.3 Symmetric equilibrium branch

Select Type|Initial point|Equilibrium. Two windows will appear: Starter and Continuer
windows corresponding to the equilibrium continuation (curve type EP EP).

In the Starter window, activate the parameter alpha. Since (6) has an equilibrium u1 = u2 = 0
for α = 0, no further changes to the Starter parameters are required.

Open a 2Dplot window and select the parameter alpha and the coordinate u1 as abscissa and
ordinate, respectively, with the visibility limits

Abscissa: 0 0.5

Ordinate: 0 8.0

To monitor stability of the equilibrium, open a Numeric window and select EIGENVALUES to
be visible in it via Window|Layout.

Click Compute|Forward. The first bifurcation point, namely a limit point LP, will be located
at α = 0.367879.... In MATLAB Command Window, you can read the following message:

label = LP, x = ( 1.000001 1.000001 0.367879 )

a=3.535537e-01
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that gives the critical equilibrium coordinates and the critical parameter value, as well as the
quadratic normal form coefficient a = 0.35355 . . . at LP. Thus, the limit point is nondegenerate
and the equilibrium manifold near LP looks like a parabola.

Further computation detects a neutral saddle H at α = 0.270671..., where the equilibrium has
eigenvalues λ1,2 = ±1, so that their sum is zero. This is not a bifurcation point for the equilibrium,
since it is a hyperbolic saddle.

Resume computations to get the second bifurcation point at α = 0.14936122..., namely, a
branching point BP. Extend the equilibrium curve further until you leave the window. You should
get Figure 12.

Notice that along the whole computed branch we have u1 = u2, i.e. it is composed of symmetric
equilibria. Check by looking at the eigenvalues in the Numeric window that only the lower part
of the branch is stable, while it is a saddle between LP and BP, and a repellor above it.

Rename the computed curve via Select| Curve followed byActions|Rename... to symmetric.

2.4 Symmetry breaking

Let us compute the second branch passing through the branching point BP. For this, open with
Select|Initial point the Initial points window and select the BP: Branch point of the equi-
librium curve symmetric. The (u1, u2, α)-values corresponding to BP will be loaded.

Select Type|Curve|Equilibrium. In the appearing Starter window, select no for all singu-
larities to monitor as in Figure 13.

Figure 13: Starter window to switch branches at BP.

Change nothing in theContinuer window butCompute|Forward andCompute|Backward.
You will get Figure 14. Thus, the branching point BP corresponds, actually, to a pitchfork bifurca-
tion: Two more branches of equilibria bifurcate vertically from this point. Moreover, each branch
is composed of equilibria which are not symmetric, u1 ̸= u2. However, one branch is mapped into
another by the involution. This phenomenon is called the symmetry breaking: We got nonsym-
metric equilibrium solutions in a symmetric system.

Warning: We have shown numerically that a discretization of the Bratu-Gelfand problem (2)
has multiple stationary solutions and limit and branching points. It does not imply immediately
that the original PDE problem has the same properties. To verify this, one has to repeat the
continuation with smaller h (i.e., bigger N) and eventually make some error estimates. It should
be noted that the appearance of the pitchfork is due to the equidistant mesh with a small number
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Figure 14: Two equilibrium branches passing through point BP.
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of points. If more accurate discretizations of (2) are used, the pitchfork and associated branches
disappear. The limit point remains and corresponds to a limit point on the branch of the stationary
solutions of (2).

2.5 Stop at zero of a user function

Sometimes we want to stop computation at a prescribed parameter value. This can be done in
matcont by specifying a user function. For example, let us compare two nonsymmetric equilibria
at α = 0.1.

Figure 15: User function input.

Click Select|User function in the main MatCont window and define a user function stop

with the associated label S by typing res=alpha-0.1 in the edit field of the User functions
window (see Figure 15). Next press Add and then OK buttons. The Starter window will change
and show a user function control. If one wants to monitor the user function, the USERFUNCTIONS

must be activated in the layout of the Numeric window.
Recomputing the nonsymmetric branches withCompute|Forward andCompute|Backward

will stop at two points labled S, where the user-defined function stop vanishes. You can see the
corresponding equilibrium coordinates and eigenvalues in the Numeric window.

3 Additional Problems

A. Compute the equilibrium manifold of the scalar ODE

ẏ = x2 + y2 − 1, y ∈ R, (7)

where x ∈ R is a parameter.

B. Consider the following chemical model ẋ = 2q1z
2 − 2q5x

2 − q3xy,
ẏ = q2z − q6y − q3xy,
ṡ = q4z −Kq4s,
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where z = 1− x− y − s and

q1 = 2.5, q2 = 1.55, q3 = 10, q4 = 0.0675, q5 = 1.0, q6 = 0.1,

and
K = 2.0.

Given an equilibrium (x, y, s) = (0.0032 . . . , 0.8838 . . . , 0.0376 . . .), find two more positive
equilibria of the system.

Hint: Compute a curve in the (x, y, s)-space defined by the first two equations:{
2q1z

2 − 2q5x
2 − q3xy = 0,

q2z − q6y − q3xy = 0,

and detect zeros of the user-defined function F = q4z −Kq4s along this curve1.

C. Find a real eigenvalue and the corresponding eigenvector of the matrix

B =

 −5 2 −3
−5 0 −4
8 −2 6


by continuation of the eigenvector v1 = (0, 0, 1)T of the matrix

A =

 1 0 0
0 −1 0
0 0 −2

 ,

corresponding to its eigenvalues λ1 = −2.

1. Consider a one-parameter family of matrices

C(α) = αB + (1− α)A, C(0) = A, C(1) = B,

and the following continuation problem in the (v, λ, α)-space:{
C(α)v − λv = 0,

vT v − 1 = 0.

Explain, how it can be used to solve the formulated problem.

2. Setup an auxiliary 4D-system of ODEs{
v̇ = C(α)v − λv,

λ̇ = vT v − 1

and continue its equilibrium manifold in the (v, λ, α)-space. Use (v1, λ1, 0) as the initial
point. Stop when α = 1 using a user-defined function.

3. Continue other two eigenvectors of A and produce a plot tracing all three real eigen-
values in the (α, λ)-plane. What happens in the limit points of these curves ?

4. Can you setup a continuation problem for (real and imaginary) parts of complex eigen-
values and eigenvectors of C(α) ?

1As described in Section 2.5, click Select | User function in the MatCont window and type the expression
for F after res= in the edit field of the appearing User functions window. Fill in the Name and Label fields, and
press Add and OK.
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D. Study equilibria of the following complex ODE:

ż = α+ z2, z ∈ C1, (8)

where the parameter α and the time are real. Hint: Write z = x+ iy, where (x, y) are real.
Then (8) takes the form {

ẋ = α+ x2 − y2,
ẏ = 2xy.

(9)

At α = −1 this system has equilibrium (x0, y0) = (1, 0), which can be continued.

Plot also the phase portraits in the (x, y)-plane of (9) for α = −0.25, α = 0, and α = 0.25

E. Study discretizations of the Bratu-Gelfand problem in more detail:

1. For N = 2, find analytically the parameter value αBP corresponding to the branching
point in system (6) and compare it with the numerical result in Section 2.

2. Analyse numerically the effect of increasing the number of equidistant mesh points
to N = 3, N = 4, and and N = 10 on the λ-values corresponding to the limit and
branching points in the finite-difference approximation (3)-(4) of the Bratu-Gelfand
problem (2).

Hint: Do not forget that λ = (N + 1)2α.
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