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This session is devoted to the numerical continuation of codim 1 bifurcations of equilibria and
limit cycles in systems of autonomous ODEs depending on two parameter

ẋ = f(x, α), x ∈ R
n, α ∈ R

2,

and detection of their codim 2 bifurcations. We will also switch at some of codim 2 eqilibrium
bifurcations to the continuation of codim 1 bifurcation curves rooted there.

1 Bifurcations of equilibria in the Bykov–Yablonskii–Kim

model

We will use matcont to continue equilibria and their bifurcations in the following chemical model
that describes CO oxidation on platinum:







ẋ = 2k1z
2 − 2k−1x

2 − k3xy

ẏ = k2z − k−2y − k3xy

ṡ = k4z − k−4s,

where z = 1− x− y − s. The ratio

K =
k−4

k4

and the parameter k2 will be used as two bifurcation parameters.

1.1 Specify the model in matcont

Specify a new ODE system in matcont with the coordinates (x,y,s) and time (t):

z=1-x-y-s

x’=2*Q1*z^2-2*Q5*x^2-Q3*x*y

y’=Q2*z-Q6*y-Q3*x*y

s’=Q4*z-K*Q4*s

The reaction rates k1, k2, k3, k4, k−1, k−2 are denoted by Q1, Q2, Q3, Q4, Q5, Q6, respectively,
while K stands for K. Generate the derivatives of order 1,2, and 3 symbolically.

1.2 Equilibrium continuation

Select Type|Initial point|Equilibrium. In the Starter window input the following numerical
values, corresponding to a stable equilibrium in the system:

x 0.001137

y 0.891483

s 0.062345

Q1 2.5

Q2 2.204678

Q3 10

Q4 0.0675

Q5 1

Q6 0.1

K 0.4

Activate the parameter Q2.
In the Continuer window, decrease the maximal step size along the curve to

MaxStepsize 0.025
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Open a 2Dplot window with (Q2,x) on the axes and input the following visibility limits:

Abscissa: 0.5 2.0

Ordinate: 0.0 0.16

Also open a Numeric window and make EIGENVALUES visible using Window|Layout.
Start the continuation of the equilibrium curve with the Compute|Forward command. Mon-

itor the eigenvalues in the Numeric window. There will be four bifurcation points detected: two
Hopf points (labeled by H) and two fold points (labeled by LP). Resume computations at each
bifurcation point, and stop them when the curve leaves the window. You should get the central
S-shaped curve presented in Figure 1. In a narrow interval of Q2-values (between two LP-points)
the system has three equilibria.
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Figure 1: Equilibrium curves with K = 0.15, 0.4, and 2.0

The normal form coefficients for the Hopf and limit point bifurcations can be read in the
MATLAB Command Window:

label = H , x = ( 0.016358 0.523971 0.328337 1.051557 )

First Lyapunov coefficient = 1.070086e+01

label = LP, x = ( 0.024717 0.450257 0.375018 1.042049 )

a=1.166509e-01

label = LP, x = ( 0.054030 0.302241 0.459807 1.052200 )

a=1.346534e-01

label = H , x = ( 0.077929 0.233063 0.492149 1.040991 )

First Lyapunov coefficient = 4.332247e+00
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Note that both first Lyapunov coefficients are positive (implying that unstable limit cycles bifurcate
there), while the LP-coeffcients are both nonzero.

Rename the computed equilibrium curve via Select|Curve and Actions|Rename into

Equilibrium1(+)

Change the value of the parameter K in the Starter window:

K 0.15

and repeat the computations with Compute|Forward. You will get a monotone curve without
bifurcation points (the left curve in Figure 1). There is only one equilibrium for all parameter
values Q2.

Finally, change the value of K to

K 2.0

and click on Compute|Forward again. Another equilibrium curve will come out with the order
of the singularities reversed (the right curve in Figure 1). There is now a big interval of the
parameter values, in which there are three equilibria in the system.

In the MATLAB Comman Window, the following messages appeared:

label = LP, x = ( 0.013310 0.771372 0.071773 1.252630 )

a=-1.705788e+00

label = H , x = ( 0.019639 0.726320 0.084680 1.271108 )

Neutral saddle

label = H , x = ( 0.128699 0.384106 0.162399 1.640254 )

Neutral saddle

label = LP, x = ( 0.151168 0.344167 0.168222 1.648672 )

a=1.787355e+00

indicating that the LP-bifurcations are still nondegenerate (a 6= 0), while – instead of two Hopf
points – two neutral saddles have appeared, which are not bifurcation points. Note that they are
still marked by H.

Store the last two computed curves permanently by renaming them into

Equilibrium2(+)

Equilibrium3(+)

via Select|Curve and Actions|Rename. Close the Curves window.

1.3 Continuation of fold and Hopf bifurcations

This section explains how to continue fold and Hopf bifurcations with respect to two control
parameters. While doing so, you will see how matcont detects some codim 2 bifurcations and
computes their normal form coefficients.

1.3.1 Fold continuation

Select the second LP: Limit point in the first computed curve Equilibrium1(+) via Select |
Initial point menu in the appearing Initial points window. The new Starter window corre-
sponding to the continuation of a limit point curve LP LP is to appear, in which you should keep
parameter Q2 active and activate parameter K, see Figure 2. Compute the limit point curve in
both directions to get Figure 3. Notice that both parameters (Q2,K) are varied along the curve.
Each point in the curve is a limit point for the equilibrium curve at the corresponding value of K.

Three points were detected‘, corresponding to codim 2 bifurcations: two Bogdanov-Takens (BT)
and one cusp (CP). At each BT point the system has an equilibrium with a double zero eigenvalue,
while at the CP point there is an equilibrium with a simple zero eigenvalue but zero coefficient of
the fold normal form. The normal form coefficients (a, b, c) of these bifurcations are reported in
the MATLAB Command Window and they are all nonzero:
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Figure 2: Starter window for the continuation of the limit point curve.

5



0.5 1 1.5 2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Q2

x

H 

LP

LP

H 

LP

H 

H 

LP

BT BT 

CP CP 

BT BT 

Figure 3: Limit point curve in Bykov’s model: BT - Bogdanov-Takens points; CP - cusp.
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label = BT , x = ( 0.115909 0.315467 0.288437 1.417628 0.971397 )

(a,b)=(-8.378442e-02, -2.136280e+00)

label = CP , x = ( 0.035940 0.352008 0.451368 1.006408 0.355991 )

c=3.627844e-01

label = BT , x = ( 0.016337 0.638410 0.200456 1.161199 0.722339 )

(a,b)=(-4.822563e-02, -1.937632e+00)

Rename the obtained limit point branches as following:

Fold(+)

Fold(-)

1.3.2 Hopf continuation

The Bogdanov-Takens points are common points for the limit point curves and curves corre-
sponding to equilibria with eigenvalues λ1 + λ2 = 0, λ3 6= 0. Actually, at each BT point, the
Hopf bifurcation curve (with λ1,2 = ±iω0, ω0 > 0) turns into the neutral saddle curve (with real
λ1 = −λ2). Thus, we can start a Hopf curve from a Bogdanov-Takens point.

Select the BT: Bogdanov-Takens point in the curve Fold(+) as initial. Then choose Type

|Curve|Hopf to prepare for the continuation of the Hopf curve. The new Starter window for
the continuation of a Hopf curve will appear automatically, see Figure 4. Check that the type of

Figure 4: Starter window for the continuation of the Hopf curve from the BT-point.

the curve to be computed is changed in the MatCont window.
Compute|Forward with Compute |Extend produces a closed Hopf curve as in Figure 5.

Actually, only the part of it to the left of two BT points corresponds to a Hopf bifurcation; the
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Figure 5: The parameter plot with the added Hopf curve in Bykov’s model: GH - generalized Hopf
points
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other part represents a neutral saddle. As it has been mentioned, this transition happens at the
Bogdanov-Takens points. There are two more codim 2 bifurcation points at the Hopf point: Two
Bautin or generalized Hopf (GH) points, where the first Lyapunov coefficient l1 vanishes.

The Command Window of MATLAB shows the following messages related to the GH points:

label = GH, x = ( 0.018022 0.368238 0.497968 0.891319 0.232487 0.003324 )

l2=-7.768996e+02

label = GH, x = ( 0.064311 0.211095 0.554870 0.924255 0.305879 0.003512 )

l2=-2.401234e+02

indicating that both GH points are nondegenerate, since the second Lyapunov coefficients l2 are
nonzero.
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Figure 6: Fold and Hopf curves in Bykov’s model: BT- Bogdanov-Takens, CP -cusp, GH - generalized
Hopf points

1.3.3 Two-parameter bifurcation diagram

Rename the obtained Hopf curve into

Hopf(+)

and delete all computed equilibrium curves.
Open a new 2Dplot window to plot the bifurcation diagram in the (Q2,K)-plane with the

visibility limits
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Q2 0.7 1.5

K 0.1 1.1

Upon redrawing the diagram in the (Q2,k)-window, you will get Figure 6.
The edge between two fold curves is a parameter region where the system has three equilibria.

Crossing a Hopf curve results in the appearance of either stable or unstable periodic orbit. There
are other bifurcations in the model.

2 Fold and torus bifurcations of cycles in the Steinmetz–

Larter model

Consider the following chemical model:















Ȧ = −k1ABX − k3ABY + k7 − k−7A,

Ḃ = −k1ABX − k3ABY + k8,

Ẋ = k1ABX − 2k2X
2 + 2k3ABY − k4X + k6,

Ẏ = −k3ABY + 2k2X
2 − k5Y.

We will study bifurcations of limit cycles of this model when parameters (k7, k8) vary
1.

2.1 System specification

Specify a new ODE system – say STLAR – in matcont

A’=-k1*A*B*X-k3*A*B*Y+k7-km7*A

B’=-k1*A*B*X-k3*A*B*Y+k8

X’=k1*A*B*X-2*k2*X^2+2*k3*A*B*Y-k4*X+k6

Y’=-k3*A*B*Y+2*k2*X^2-k5*Y

where (A,B,X,Y) are the coordinates and (k1,k2,k3,k4,k5,k6,k7,km7,k8) are the parameters.
Use (default) t for time and generate symbolically partial derivatives of order 1,2, and 3.

2.2 Preliminary one-parameter analysis

2.2.1 Continuation of an equilibrium

To begin with, we continue an equilibrium of the model and detect its Hopf bifurcation.
Input Type|Initial point|Equilibrium in the main MatCont window.
Input the following numerical data in the appearing Starter window:

A 31.78997

B 1.45468

X 0.01524586

Y 0.1776113

k1 0.1631021

k2 1250

k3 0.046875

k4 20

k5 1.104

k6 0.001

k7 4.235322

km7 0.1175

k8 0.5

1If you have worked out TUTORIAL III, go directly to Section 2.3.
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These values correspond to an equilibrium (A,B,X, Y ) in the system. Activate the parameter k7.
Open Window|Numeric and change its appearance via the Window|Layout command.

Namely, select EIGENVALUES to be shown in the window.
Start Compute|Forward. The equilibrium curve will be continued and you get a Hopf bifur-

cation. The message in the MATLAB Command Window

label = H , x = ( 34.808899 1.328517 0.015246 0.177611 4.590046 )

First Lyapunov coefficient = 1.527549e-02

at k7 = 4.590046 . . . indicates a subcritical Hopf bifurcation. Indeed, there are two eigenvalues of
the equilibrium with Re λ1,2 ≈ 0 at this parameter value visible in the Numeric window. The
critical frequency Im λ1 6= 0, while the first Lyapunov coefficient is positive. Thus, there should
exist an unstable limit cycle, bifurcating from the equilibrium. Stop computations and rename
the computed curve via Select|Curve and Actions|Rename into

Equilibrium(+)

Compute|Backward and Compute|Extend once until you get a Hopf bifurcation at k7 =
0.712475 . . . with the message

label = H , x = ( 1.808301 25.573303 0.015246 0.177611 0.712475 )

First Lyapunov coefficient = -2.371880e-02

in the MATLAB Command Window. The first Lyapunov coefficient is negative now. This means
that a stable limit cycle bifurcates from the equilibrium, when it looses stability. Stop computations
and rename the computed curve into Equilibrium(-).

2.2.2 Cycle continuation

Select the H: Hopf point in the curve Equilibrium(-) as initial. matcont will prepare to
continue a limit cycle curve from the Hopf point (curve type H LC). Choose the yes-option to
monitor all singularities in the Starter window. Set

MaxStepsize 1

MaxNumPoints 25

in theContinuer window. Change the appearance of theNumericwindow via theWindow|Lay-
out command by selecting MULTIPLIERS to be shown.

Click Compute|Forward to start the continuation of the limit cycle. At k7 = 0.716434 . . .
the message Neimark-Sacker indicates a torus bifurcation. In the MATLAB Command Window,
the following message appears:

Neimark-Sacker (period = 1.091213e+01, parameter = 7.164336e-01)

Normal form coefficient = -4.912065e-8

Indeed, there are two complex multipliers with (approximately) |µ| = 1 and one trivial multiplier
(approximately) equal to 1. This can be seen in theNumeric window. The normal form coefficient
is small but negative, indicating that a stable two-dimensional invariant torus bifurcates from the
limit cycle.

Rename the computed curve into cycle.

2.3 Two-parameter analysis

2.3.1 Continuation of the Hopf bifurcation curve

Select the H: Hopf point in the computed Equilibrium(+) curve using the Select|Initial point
command. Select Type|Curve|Hopf. Activate one more parameter, namely k8, in the Starter

window.
Open a new 2Dplot window with the variables k7 and k8 as abscissa and ordinate, respectively,

and the visibility limits

11



Abscissa 0 7

Ordinate 0.3 1

Continue the Hopf bifurcation curve withCompute|Forward followed byCompute|Extend.
At

(k7, k8) = (6.336044 . . . , 0.413039 . . .)

a generalized Hopf bifurcation will be found, where the first Lyapunov coefficient vanishes (label
GH). Resume the countinuation and terminate it when the Hopf curve leaves the window. In the
MATLAB Command Window, the following messsage appears:

label = GH, x = ( 50.408556 0.979006 0.013424 0.131840 6.336044 0.413039 0.594360 )

l2=3.25430e-03

from which follows that this codim 2 bifurcation is nondegenerate (the second Lyapunov coefficient
l2 is nonzero). Rename the computed curve in Hopf(+).

The backward continuation of the Hopf bifurcation curve brings in one more generalized Hopf
point at

(k7, k8) = (0.999480 . . . , 0.645896 . . .).

Resume and extend until the window is left. You should get Figure 7.
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Figure 7: The Hopf bifurcation curve: GH’s - two generalized Hopf points.

The MATLAB Command Window contains the message:

label = GH, x = ( 3.009221 14.184417 0.017978 0.260260 0.999480 0.645896 0.292299 )

l2=-4.044379e-03

indicating that this GH is also nondegenerate. Rename this curve in Hopf(-).
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2.3.2 Continuation of the LPC-bifurcation starting at the GH-point

Click Select|Initial point and select GH: Generalized Hopf point in the Hopf(+) curve as
initial. Since it is known that an LPC curve originates there, select Type|Curve|Limit point

of cycles to continue. The Starter and Continuer windows for the continuation of the fold
bifurcation of cycles from the generalized Hopf point will appear.

In the Starter window, set yes to monitor for all singularities except the Cusp point of cycles
and decrease the amplitude of the predicted LPC to 0.01. Check that ntst is 20 and ncol is 4.
In the Continuer window, set MaxStepsize equal to 2.0 and MaxNumPoints equal to 300. The
Starter and Continuer windows should look like in Figure 8.

Figure 8: The Starter and Continuer windows for the LPC-continuation from the GH-point.

Compute|Forward the LPC-bifurcation curve (with Compute|Extend) and observe that it
actually connects the two found GH points in the Hopf curve, see Figure 9. The continuation
(which takes some time) stops with the message Step size too small near the left GH point.

The computed curve will also contains two extra codim 2 points labeled by R1. These are
strong resonance 1:1 points, where the cycle has a triple multiplier 1 (counting the trivial
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Figure 9: Hopf and limit point of cycles curves connecting the GH-points.
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multiplier). In the Numeric window, you can read the corresponding values of (k7, k8). The
MATLAB Command Window gives the following messages:

label = R1 (period = 1.400190e+01, parameters = 1.857676e+00, 9.304221e-01)

label = R1 (period = 1.239456e+01, parameters = 1.179554e+00, 7.239571e-01)

with the parameter values also given.
Rename the computed GH LPC curve into cyclefold.

2.3.3 Continuation of the NS-curve in two parameters

Take the NS: Neimark-Sacker point in the limit cycle curve cycle as initial. To speed up the
continuation, set no to monitor all singularities and compute the multipliers.

Change the plotting region of the 2Dplot window to

Abscissa 1 2.2

Ordinate 0.6 1

and redraw the diagram.
Click Compute|Forward and wait until the computed NS-curve enters the window (this takes

some time). Extend the computation several times to obtain Figure 10.
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Figure 10: Hopf, limit point of cycles and Neimark-Sacker curves: The NS-curve between two
R1-points corresponds to neutral saddle cycles.

The computed NS-curve passes through the R1 points of strong resonance 1:1, where it tangen-
tially meets the LPC-curve and turns from the Neimark-Sacker bifurcation curve into the neutral
saddle cycle curve (both are characterised by the presence of two multipliers with µ1µ2 = 1).

Warning: There are many other bifurcations in the model and Figure 10 shows only few of
them.
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3 Additional Problems

A. Consider the following system by Lorenz [1984]:






ẋ = −y2 − z2 − ax+ aF,

ẏ = xy − bxz − y +G,

ż = bxy + xz − z,

(1)

where (a, b, F,G) are parameters.

1. Using matcont, compute fold and Hopf bifurcation curves for equilibria of (1) with
a = 1

4
, b = 4, in the parameter domain

{(G,F ) : 0 ≤ G ≤ 3, 0 ≤ F ≤ 3}.

Find numerical parameter values (GZH, FZH) at which (1) exhibits a fold-Hopf bifurcation

(i.e., has an equilibrium with eigenvalues λ1 = 0, λ2,3 = ±iω0, ω0 > 0). Find numerical
parameter values (GCP, FCP) at which (1) exhibits a cusp bifurcation (i.e., has a triple
equilibrium).

2. Derive analytical expressions for (GZH, FZH) and (GCP, FCP) as functions of (a, b) and
verify the numerical results above.

Hints: At the fold-Hopf both the trace and the determinant of the Jacobian matrix of
(1) vanish. To find a triple equilibrium, reduce the equilibrium system for (1) to one
cubic equation for the x-coordinate of the equilibrium and look for its triple root.

B. Consider the adaptive control system of Lur’e type







ẋ = y,

ẏ = z,

ż = −αz − βy − x+ x2.

(2)

1. Continue the equilibrium (x, y, z) = (0, 0, 0) of (2) with respect to parameter α starting
at α = 2, β = 1 and detect its Hopf bifurcation.

2. Compute the Hopf bifurcation curve in the (α, β)-plane and plot it using the visibility
limits

alpha 0 1.5

beta 0 2

3. Find the period-doubling (PD) of the cyle bifurcating from the Hopf point and continue
it in two parameters.

4. Find the period-doubling of the doubled cycle and continue it in the (α, β)-plane.

C. Consider the following prey-predator system from mathematical ecology by Bazykin and
Khibnik [1981]:











ẋ =
x2(1− x)

n+ x
− xy,

ẏ = −y(m− x),

(3)

where n > 0, 0 < m < 1.

1. Compare its bifurcation diagrams with respect to parameter m for n1 = 1

4
and n2 = 1

16

using matcont.

2. Compute the two-parameter bifurcation diagram in the (m,n)-plane and sketch all
qualitatively different phase portraits.

Hint: The diagram should include a Hopf bifurcation curve (H) and a cycle fold curve
(LPC) that connects a generalized Hopf point (GH) in H with point (m,n) = (0, 0).
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3. Derive an analytic expresssion for the Hopf bifurcation curve in (3). Hints: Consider
the orbitally-equivalent polynomial system

{

ẋ = x2(1− x) − xy(n+ x),
ẏ = −y(m− x)(n + x).

(4)

4. Verify the numerically found GH-point by proving that the first Lyapunov coefficient l1
vanish at (mGH, nGH) =

(

1

4
, 1

8

)

. Hints:

(a) At Hopf parameter values, translate the origin in (4) to the equilibrium and scale
the variables to obtain a system in the form

{

ξ̇ = −ωη + P (ξ, η),
η̇ = ωξ +Q(ξ, η),

where P,Q contain terms of order two and higher in (ξ, η).

(b) Introduce complex varaibles z = ξ + iη and z̄ = ξ − iη, and derive the equation

ż = iωz +
∑

2≤j+k≤3

1

j!k!
gjkz

j z̄k +O(|z|4).

(c) Compute

l1 =
1

2ω2
Re (ig20g11 + ωg21) .
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