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Summary

In this chapter we summarize the basic definitions and tools of analysis of dynamical systems, with particular

emphasis on the asymptotic behavior of continuous-time autonomous systems. In particular, the possible

structural changes of the asymptotic behavior of the systemunder parameter variation, called bifurcations,

are presented together with their analytical characterization and hints on their numerical analysis. The

literature on dynamical systems is huge and we do not attemptto survey it here. Most of the results on

bifurcations of continuous-time systems are due to Andronov and Leontovich [see Andronovet al., 1973].

More recent expositions can be found in Guckenheimer & Holmes [1997] and Kuznetsov [2004], while less

formal but didactically very effective treatments, rich ininteresting examples and applications, are given

in Strogatz [1994] and Alligoodet al. [1996]. Numerical aspects are well described in Allgower & Georg

[1990] and in the fundamental papers by Keller [1977] and Doedel et al. [1991a,b], but see also Beynet al.

[2002] and Kuznetsov [2004]. This chapter mainly combines material from two previous contributions of the

authors, the first part of the bookBiosystems and Complexity[Rinaldi, 1993, in Italian] and the Appendix A

of a recent book on evolutionary dynamics [Dercole & Rinaldi, 2008].



1 Dynamical Systems and State Portraits

The dynamical systems considered in this chapter arecontinuous-time, finite-dimensionaldynamical sys-

tems described byn autonomous(i.e., time-independent) ordinary differential equations (ODEs) called

state equations, i.e.,

ẋ1(t) = f1(x1(t), x2(t), . . . , xn(t)),

ẋ2(t) = f2(x1(t), x2(t), . . . , xn(t)),

...

ẋn(t) = fn(x1(t), x2(t), . . . , xn(t)),

wherexi(t) ∈ R, i = 1, 2, . . . , n, is theith state variableat timet ∈ R, ẋi(t) is its time derivative, and

functionsf1, . . . , fn are assumed to be smooth.

In vector form, the state equations are

ẋ(t) = f(x(t)), (1)

wherex and ẋ aren-dimensional vectors (thestate vectorand its time derivative) andf = [f1, . . . , fn]T

(theT superscript denotes transposition).

Given the initial statex(0), the state equations uniquely define atrajectory of the system, i.e., the

state vectorx(t) for all t ≥ 0. A trajectory is represented in state space by a curve starting from point

x(0), and vectorẋ(t) is tangent to the curve at pointx(t). Trajectories can be easily obtained numerically

through simulation (numerical integration) and the set of all trajectories (one for anyx(0)) is called thestate

portrait. If n = 2 (second-orderor planarsystems) the state portrait is often represented by drawinga sort of

qualitative skeleton, i.e., strategic trajectories (or finite segments of them), from which all other trajectories

can be intuitively inferred. For example, in Figure 1A the skeleton is composed of13 trajectories: three of

them (A,B,C) are just points (corresponding to constant solutions of (1)) and are calledequilibria, while

one(γ) is a closed trajectory (corresponding to a periodic solution of (1)) called alimit cycle. The other

trajectories allow one to conclude thatA is a repellor (no trajectory starting close toA tends or remains

close toA), B is asaddle(almost all trajectories starting close toB go away fromB, but two trajectories
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Figure 1: Skeleton of the state portrait of a second-order system: (A) skeleton with13 trajectories; (B)
reduced skeleton (characteristic frame) with8 trajectories (attractors, repellors, and saddles with stable and
unstable manifolds).

A

Figure 2: An example of unstable attractor: the equilibriumA.

tend toB and compose the so-calledstable manifold; the two trajectories emanating fromB compose the

unstable manifoldand both manifolds are also calledsaddle separatrices), while C andγ areattractors

(all trajectories starting close toC [γ] tend toC [γ]). Attractors are said to be (asymptotically) stableif

all nearby trajectories remain close to them,globally stableif they attract all initial conditions (technically

with the exclusion of sets with no measure in state space), while saddles and repellors areunstable. Notice,

however, that attractors can also be unstable, as shown in Figure 2, where the equilibriumA attracts all

nearby initial conditions, part of which along trajectories going away from it.

The skeleton of Figure 1A also identifies thebasin of attractionof each attractor: in fact, all trajectories

starting above [below] the stable manifold of the saddle tend toward the limit cycleγ [the equilibriumC].

Notice that the basins of attraction are open sets since their boundaries are the saddle and its stable manifold.
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Often, the full state portrait can be more easily imagined when the skeleton is reduced, as in Figure 1B, to

its basic elements, namely attractors, repellors, and saddles with their stable and unstable manifolds. From

now on, the reduced skeleton is called thecharacteristic frame.

The asymptotic behaviors of continuous-time second-ordersystems are quite simple, because in the case

n = 2 attractors can be equilibria (stationary regimes) or limit cycles (cyclic or periodic regimes). But in

higher-dimensional systems, i.e., forn ≥ 3, more complex behaviors are possible since attractors can also

be tori (quasi-periodic regimes) or strange attractors(chaotic regimes).

A torus attracting nearby trajectories is sketched in Figure 3A. A trajectory starting from a point of the

torus remains forever on it (ı.e., the torus isinvariant for the dynamics of the system) but, in general, never

passes again through the starting point. For example, two frequencies characterize a three-dimensional torus,

namely two positive real numbers,1/T1, 1/T2, measuring the number of rotations around the cross-section

of the torus and the number of revolutions along it, per unit of time. Generically, the ratioT1/T2 is irrational,

so that there is no periodT such that

T = T1r1 = T2r2, (2)

with r1 andr2 positive integers. In words, there is no timeT in which a trajectory on the torus carries out

an integer number of cross-section rotations and an integer, possibly different, number of torus revolutions,

i.e., no timeT after which the trajectory revisit the starting point. As a consequence, a single trajectory on

the torus covers it densely in the long-run, and the corresponding regime is called quasi-periodic, being the

result of two (or more in higher-dimensions) frequencies.

In special cases, however, the ratioT1/T2 can be rational, i.e., trajectories on torus can be periodic

((r1 : r2) cycles on torus, for the minimumr1 andr2 satisfying (2)), A cycle on torus can be stable (i.e.,

attracting nearby trajectories on torus) or unstable. For obvious topological reasons, the existence of a stable

(r1: r2) cycle on torus requires the existence of an unstable(r1: r2) cycle on the same torus, and rules out

cycles characterized by different pairs.

A strange attractor (a sort of “tangle” in state space) is shown in Figure 3B. Trajectories starting in the

vicinity of the tangle tend to it and then remain in it forever. The most striking difference among attractors

is that equilibria, cycles, and tori have integer dimension(0, 1, and2, respectively), while strange attractors

arefractal sets and therefore have noninteger dimension (see next chapter). Another important difference is

that two trajectories starting from very close points in an attractor remain very close forever if the attractor
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Figure 3: Sketch of an attracting torus (A) and of a strange attractor (B).

is an equilibrium, a cycle, or a torus, while they alternatively diverge (stretching) and converge (folding)

forever if the attractor is a tangle. The mean rate of divergence of nearby trajectories is measured by the

so-calledLyapunov exponents, and turns out to be the most important indicator in the studyof deterministic

chaos (see Chapter 14).

In the simple but very important case of linear systems

ẋ(t) = Ax(t),

the state portrait can be immediately obtained from the eigenvalues and eigenvectors of then × n matrix

A (we recall that the eigenvalues of ann × n matrix A are the zerosλ1, λ2, . . . , λn of its characteristic

polynomialdet(λI − A), wheredet denotes matrix determinant, and that the eigenvectors associated with

an eigenvalueλi are nontrivial vectorsx(i) satisfying the relationshipAx(i) = λix
(i)). There are five

generic state portraits of second-order continuous-time linear systems: three of them are shown in Figure 4

(the other two are obtained from cases A and B by reversing thesign of the eigenvalues and all arrows

in the state portraits). When the two eigenvalues are complex (case A), the trajectories spiral around the

origin and tend to [diverge from] it if the real part of the eigenvalues is negative [positive]. By contrast,

when the two eigenvalues are real (cases B and C), the trajectories do not spiral and there are actually

special straight trajectories (corresponding to the eigenvectors) converging to [diverging from] the origin

if the corresponding eigenvalue is negative [positive]. Along the straight trajectories both state variables

vary in time asexp(λit), while along all other trajectories they follow a more complex law of the kind

c1 exp(λ1t) + c2 exp(λ2t). Since in generic casesλ1 6= λ2, one of the two exponential functions dominates

the other fort → ±∞ and all curved trajectories tend to align with one of the two straight trajectories. In
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Figure 4: Three state portraits of generic second-order continuous-time linear systems (λ1 6= λ2, both with
nonzero real part, see the complex plane associated with each panel): (A) (stable focus) and (B) (stable
node) are attractors; the unstable focus (positive real part complex conjugate eigenvalues) and the unstable
node (positive real eigenvalues) (repellors) are obtainedby reversing all arrows in the state portraits (A)
and (B), respectively; (C) is a saddle. Straight trajectories correspond to eigenvectors associated with real
eigenvalues. Double arrows indicate the straight trajectories along which the state varies more rapidly.

particular, in the case of a stable node (characterized byλ2 < λ1 < 0, see Figure 4B), both exponential

functions tend to zero fort → +∞, but in the long runexp(λ1t) ≫ exp(λ2t) so that all trajectories, except

the two straight trajectories corresponding to the second eigenvectorx(2), tend to zero tangentially to the

first eigenvectorx(1).

Very similar definitions can be given fordiscrete-time systemsdescribed byn difference state equations

of the form

x(t + 1) = f(x(t)), (3)

where the timet is an integer. In this case trajectories are sequences of points in state space and, again,

asymptotic regimes can be stationary, cyclic, quasi-periodic, and chaotic. The major difference between

continuous-time and discrete-time dynamical systems is that the former are alwaysreversible, since under

very general conditions system (1) has a unique solution fort < 0, while the latter can beirreversible. This

implies that discrete-time systems can have quasi-periodic and chaotic regimes even ifn = 1.

The equilibria of system (1) can be found by determining all solutions x̄ of (1) with ẋ = 0. In second-

order systems the equilibria are often determined graphically through the so-calledisoclines, which are

nothing but the lines in state space on whichf1(x1, x2) = 0 (x1-isoclines) andf2(x1, x2) = 0 (x2-isoclines).

Obviously, the equilibria are at the intersections ofx1- andx2-isoclines. Moreover, all trajectories crossx1-

[x2-] isoclines vertically [horizontally] becausėx1 [ẋ2] is zero onx1- [x2-] isoclines. This property is often
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useful for devising qualitative geometric features of the state portrait.

The stability of an equilibrium̄x is not as easy to ascertain. However, it can very often be discussed

throughlinearization, i.e., by approximating the behavior of the system in the vicinity of the equilibrium

through a linear system. This can be done in the following way. Let

δx(t) = x(t) − x̄,

so that

˙δx(t) = f(x̄ + δx(t)).

Under very general conditions, we can expand the functionf in Taylor series, thus obtaining

˙δx(t) = f(x̄) +
∂f

∂x

∣

∣

∣

∣

x=x̄

δx(t) + O(‖δx(t)‖2),

where‖ · ‖ is the standard norm inRn andO(‖δx(t)‖2) stays for a term that vanishes as‖δx(t)‖2 when

δx(t) → 0. Noticing thatf(x̄) = 0, sincex̄ is a constant solution of (1), we have

˙δx(t) =
∂f

∂x

∣

∣

∣

∣

x=x̄

δx(t) + O(‖δx(t)‖2), (4)

where then × n constant matrix

J =
∂f

∂x

∣

∣

∣

∣

x=x̄

=















∂f1

∂x1
· · ·

∂f1

∂xn
...

...
∂fn

∂x1
· · ·

∂fn

∂xn















x=x̄

(5)

is called theJacobian matrix(or, more simply,Jacobian). One can easily imagine that, under suitable

conditions, the behavior of system (4) (which is still system (1)) can be well approximated in the vicinity of

x̄, by the so-calledlinearized system, which, by definition, is

˙δx(t) =
∂f

∂x

∣

∣

∣

∣

x=x̄

δx(t). (6)

This is, indeed, the case. In particular, it can be shown thatif the solutionδx(t) of (6) tends to0 for all

7



z(1)
z(2)

z̄

z(0)

P

x2

x1

x2

x3

γ

P

z̄

z(1)

γ

z(0)

x1

(A) (B)

Figure 5: A stable limit cycleγ, the Poincaré sectionP, and the sequencez(0), z(1), z(2), . . . of return
points.

δx(0) 6= 0 (as in Figures 4A and B), then the same is true for system (4) provided‖δx(0)‖ is sufficiently

small. In other words, the stability of the linearized system implies the (local) stability of the equilibrium̄x.

This result is quite interesting because the stability of the linearized system can be numerically ascertained

by checking if all eigenvaluesλi, i = 1, . . . , n, of the Jacobian matrix (5) have negative real part. A similar

result holds also for the case of unstable equilibria. More precisely, if at least one eigenvalueλi of the

Jacobian matrix has positive real part (as in Figure 4C), then the equilibriumx̄ is locally unstable (i.e., the

solution of (4) diverges at least temporarily from zero for suitableδx(0), no matter how small‖δx(0)‖ is).

Similarly, the local stability of an equilibrium of a discrete-time system of the form (3) can be studied by

simply looking at the module|λi| of the n eigenvaluesλi. In fact, if all |λi| < 1, i.e., if all eigenvalues

are inside the unit circle in the complex plane, the equilibrium is stable, while if at least one eigenvalue is

outside the unit circle (|λi| > 1), the equilibrium is unstable.

The study of the stability of limit cycles can also be carriedout through linearization, following a very

simple idea suggested by Poincaré (see Figure 5). In the case of second-order systems (see Figure 5A) the

Poincaré method consists in cutting locally and transversally the limit cycle with a manifoldP, called the

Poincaŕe section, and looking at the sequencez(0), z(1), z(2), . . . of points of return of the trajectory toP.

SinceP is one dimensional,z(t) is a scalar coordinate onP and the state equation (1) implicitly defines a
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first-order discrete-time system called thePoincaŕe map

z(t + 1) = P (z(t)). (7)

The intersection̄z of the limit cycleγ with P is an equilibrium of the Poincaré map (sincez̄ = P (z̄)) andγ

is stable if and only if the equilibrium̄z of (7) is stable. One can therefore use the linearization technique,

by taking into account that the eigenvalue of the linearizedPoincaré map,dP/dz|z=z̄ (called theFloquet

multiplier, or simply multiplier, of the cycle), cannot be negative, since trajectories cannot cross each other.

Thus, a sufficient condition for the (local) stability of thelimit cycle γ is

dP

dz

∣

∣

∣

∣

z=z̄

< 1, (8)

while the reverse inequality implies the instability ofγ.

Similarly, in the case of third-order systems (see Figure 5B) the Poincaré section is a two-dimensional

manifoldP and the points of returnz(0), z(1), z(2), . . . are generated by a two-dimensional Poincaré map

(7). Again, the cycle is stable if and only if the equilibrium̄z of the discrete-time system (7) is stable. Thus,

if the two multipliers of the cycle, i.e., the two eigenvalues of the Jacobian matrix∂P/∂z|z=z̄ , are smaller

than1 in module, the cycleγ is stable, while if the module of at least one multiplier is greater than1 the

cycle is unstable. These sufficient conditions for the stability and instability of a cycle can obviously be

extended to then-dimensional case, where∂P/∂z|z=z̄ is an(n − 1) × (n − 1) matrix. It must be noticed,

however, that they can only be verified numerically, since the cycleγ is, in general, not known analytically.

The Poincaré section is also very useful for distinguishing quasi-periodic from chaotic regimes in third

order systems. In fact, a torus appears on a Poincaré section as a regular closed curve, while strange attractors

appear as clouds of points (with fractal geometry), as shownin Figure 6.

2 Structural Stability

Structural stabilityis a key notion in the theory of dynamical systems, since it isneeded to understand inter-

esting phenomena like catastrophic transitions, bistability, hysteresis, frequency locking, synchronization,

subharmonics, deterministic chaos, as well as many others.The final target of structural stability is the study
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Figure 6: The image of a strange attractor on a Poincaré section.

of the asymptotic behavior of parameterized families of dynamical systems of the form

ẋ(t) = f(x(t), p), (9)

for continuous-time systems, and

x(t + 1) = f(x(t), p), (10)

for discrete-time systems, wherep is a vector of constantparameters. Given the parameter vectorp, all the

definitions that we have seen in the previous section apply tothe particular dynamical system of the family

identified byp. Thus, all geometric and analytical properties of systems (9) and (10), e.g., trajectories,

state portrait, equilibria, limit cycles, their stabilityand associated Jacobian matrices and Poincaré maps, the

basins of attraction, and, consequently, the asymptotic behavior of the system, now depend uponp.

Structural stability allows one to rigorously explain why asmall change in a parameter value can give rise

to a radical change in the system behavior. More precisely, the aim is to find regionsPi in parameter space

characterized by the same qualitative behavior of system (9), in the sense that all state portraits corresponding

to valuesp ∈ Pi are topologically equivalent (i.e., they can be obtained one from the other through a simple

deformation of the trajectories). Thus, varyingp ∈ Pi the system conserves all the characteristic elements

of the state portrait, namely its attractors, repellors, and saddles. In other words, whenp is varied inPi,

the characteristic frame varies but conserves its structure. Figure 7 shows the typical result of a study of

structural stability in the space(p1, p2) of two parameters of a second-order system. The parameter space

is subdivided into three regions,P1, P2, andP3, and for all interior points of each one of these regions the

state portrait is topologically equivalent to that sketched in the figure. InP1 the system is an oscillator, since
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Figure 7: Bifurcation diagram of a second-order system. Thecurves separating regionsP1, P2, andP3 are
bifurcation curves.

it has a single attractor, which is a limit cycle. Also inP2 there is a single attractor, which is, however, an

equilibrium. Finally, inP3 we havebistabilitysince the system has two alternative attractors (two equilibria),

each with its own basin of attraction delimited by the stablemanifold of the saddle equilibrium.

If p is an interior point of a regionPi, system (9) is said to bestructurally stableat p since its state

portrait is qualitatively the same as those of the systems obtained by slightly perturbing the parameters in

all possible ways. By contrast, ifp is on the boundary of a regionPi the system is not structurally stable

since small perturbations can give rise to qualitatively different state portraits. The points of the boundaries

of the regionsPi are calledbifurcation points, and, in the case of two parameters, the boundaries are called

bifurcation curves. Bifurcation points are therefore points of degeneracy. Ifthey lie on a curve separating

two distinct regionsPi andPj , i 6= j, they are called codimension-1 bifurcation points, while if they lie on

the boundaries of three distinct regions they are called codimension-2 bifurcation points, and so on.

Notice that the simplest dynamical system, namely the first-order linear systeṁx(t) = px(t), has a

bifurcation atp = p∗ = 0, i.e., when its eigenvaluep is equal to zero. In fact, such a system is stable for

p < 0 and unstable forp > 0, while it is neutrally stable (i.e., the equilibriumx = 0 is not unstable but does

not attract all nearby trajectories) forp = p∗ = 0.

In the following, we mainly focus on second-order, continuous-time systems and limit the discussion to
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Figure 8: Example of local bifurcation: saddle-node bifurcation.

codimension-1 bifurcations.

3 Bifurcations as Collisions

A generic element of the parameterized family of dynamical systems (9) must be imagined to be structurally

stable because ifp is selected randomly it will be an interior point of a regionPi with probability 1. In

generic conditions, attractors, repellors, saddles, and their stable and unstable manifolds are separated one

from each other. Moreover, the eigenvalues of the Jacobian matrices associated with equilibria have nonzero

real parts, while the eigenvalues of linearized Poincaré maps associated with cycles have module different

from 1. By continuity, small parametric variations will induce small variations of all attractors, repellors,

saddles, and their stable and unstable manifolds which, however, will remain separated if the parametric

variations are sufficiently small. The same holds for the eigenvalues of Jacobian matrices and linearized

Poincaré maps, which, for sufficiently small parametric variations, will continue to be noncritical. Thus, in

conclusion, starting from a generic condition, it is necessary to vary the parameters of a finite amount to

obtain a bifurcation, which is generated by the collision oftwo or more elements of the characteristic frame,

which then changes its structure at the bifurcation, thus involving a change of the state portrait of the system.

A bifurcation is calledlocal when it involves the degeneracy of some eigenvalue of the Jacobians as-

sociated with equilibria or cycles. For example, the bifurcation described in Figure 8, calledsaddle-node

bifurcation, is a local bifurcation. Indeed, the bifurcation can be viewed as the collision, atp = p∗, of two

equilibria: forp < p∗ the two equilibria (elements of the characteristic frame) are distinct and one is stable

(the nodeN ) while the other is unstable (the saddleS). Then, asp increases, the two equilibria approach
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Figure 9: Example of global bifurcation: heteroclinic bifurcation.

one each other and finally collide whenp = p∗ (and then disappear). Notice that the characteristic frameis

degenerate atp = p∗ because it is composed of one element (an equilibrium), while there are two equilibria

for p < p∗ and none forp > p∗. But the bifurcation can also be interpreted in terms of eigenvalue de-

generacy. In fact, the eigenvalues of the Jacobian evaluated at the saddle are one positive and one negative,

while the eigenvalues of the Jacobian evaluated at the node are both negative, so that when the two equilibria

coincide, one of the two eigenvalues of the unique Jacobian matrix must be equal to zero.

By contrast,global bifurcationscannot be revealed by eigenvalue degeneracies. One example, known as

heteroclinic bifurcation, is shown in Figure 9, which presents the characteristic frames (two saddles and their

stable and unstable manifolds) of a system forp = p∗ (bifurcation value) and forp 6= p∗. The characteristic

frame for p = p∗ is structurally different from the others because it corresponds to the collision of the

unstable manifoldX+
1 of the first saddle with the stable manifoldX−

2 of the second saddle. However,

the two Jacobian matrices associated with the two saddles donot degenerate atp∗, since their eigenvalues

remain different from zero. In other words, the bifurcationcannot be revealed by the behavior of the system

in the vicinity of an equilibrium, but is the result of the global behavior of the system.

When there is only one parameterp and there are various bifurcations at different values of the parameter,

it is often advantageous to represent the dependence of the system behavior upon the parameter by drawing

in the three-dimensional space(p, x1, x2), often calledcontrol space, the characteristic frame for all values

of p. This is done, for example, in Figure 10 for the same system described in Figure 7, withp = p1 and

constantp2. Figure 10 shows that for increasing values ofp a so-calledHopf bifurcationoccurs, as the stable

limit cycle shrinks to a point, thus colliding with the unstable equilibrium that exists inside the cycle. This
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x2

x1

p

Figure 10: Characteristic frame in the control space of a system with a Hopf and a saddle-node bifurcation.
Continuous lines represent trajectories in the three illustrated state portraits and stable equilibria or limit
cycles otherwise; dashed lines represent unstable equilibria. The symbolsP1, P2, andP3 refer to Figure 7.

is a local bifurcation, because the equilibrium is stable for higher values ofp, so that the bifurcation can

be revealed by an eigenvalue degeneracy. The figure also shows that a saddle-node bifurcation occurs at a

higher value of the parameter, as two equilibria, namely a stable node and a saddle, become closer and closer

until they collide and disappear. The Hopf and the saddle-node bifurcations are perhaps the most popular

local bifurcations of second-order systems and are discussed in some detail in the next section.

4 Local Bifurcations

In this section we discuss the seven most important local bifurcations of continuous-time systems. Three

of them, calledtranscritical, saddle-node (already encountered above), andpitchfork, can be viewed as

collisions of equilibria. Since they can occur in first-order systems, we present them in that context. The

other bifurcations involve limit cycles. Two of them can occur in second-order systems, namely the Hopf

bifurcation (already seen), i.e., the collision of an equilibrium with a vanishing cycle, and thetangent of limit

cycles, which is the collision of two cycles. The last two bifurcations, theflip (or period-doubling) and the

Neimark-Sacker(or torus), are more complex because they can occur only in three- (or higher-) dimensional

systems. The first is a particular collision of two limit cycles, one with period double than the other, while
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Figure 11: Three local bifurcations viewed as collisions ofequilibria: (A) transcritical; (B) saddle-node; (C)
pitchfork.

the second is the collision between a cycle and a vanishing torus.

Transcritical, Saddle-Node, and Pitchfork Bifurcations

Figure 11 shows three different types of collisions of equilibria in first-order systems of the form (9). The

statex and the parameterp have been normalized in such a way that the bifurcation occurs atp∗ = 0 and

that the corresponding equilibrium is zero. Continuous lines in the figure represent stable equilibria, while

dashed lines indicate unstable equilibria. In Figure 11A the collision is visible in both directions, while

in Figures 11B and C the collision is visible only from the left or from the right. The three bifurcations

are called, respectively, transcritical, saddle-node, and pitchfork, and the three most simple state equations

(callednormal forms) giving rise to Figure 11 are

ẋ(t) = px(t) − x2(t), transcritical, (11a)

ẋ(t) = p + x2(t), saddle-node, (11b)

ẋ(t) = px(t) − x3(t), pitchfork. (11c)

The first of these bifurcations is also calledexchange of stabilitysince the two equilibria exchange their

stability at the bifurcation. The second is called saddle-node bifurcation because in second-order systems it

corresponds to the collision of a saddle with a node, as shownin Figure 8, but it is also known asfold, in

view of the form of the graph of its equilibria. Due to the symmetry of the normal form, the pitchfork has

three colliding equilibria, two stable and one unstable in the middle.
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Figure 12: Bifurcation diagrams corresponding to the normal forms (12).

It is worth noticing that in changing the sign of the quadratic and cubic terms in the normal forms (11),

three new normal forms are obtained, namely

ẋ(t) = px(t) + x2(t), transcritical, (12a)

ẋ(t) = p − x2(t), saddle-node, (12b)

ẋ(t) = px(t) + x3(t), pitchfork, (12c)

which have the bifurcation diagrams shown in Figure 12. Comparing Figures 11 and 12, it is easy to

verify that nothing changes from a phenomenological point of view in the first two cases. However, for the

pitchfork bifurcation this is not true, since in case (11c) there is at least one attractor for each value of the

parameter, while in case (12c), forp > 0, there is only a repellor. To distinguish the two possibilities, the

pitchfork (11c) is calledsupercritical, while the other is calledsubcritical.

Hopf Bifurcation

The Hopf bifurcation (actually discovered by A. A. Andronovfor second-order systems; see Andronovet al.,

1973, and Marsden & McCracken, 1976, for the English translation of Andronov and Hopf’s original works)

explains how a stationary regime can become cyclic as a consequence of a small variation of a parameter, a

rather common phenomenon not only in physics but also in biology, economics, and life sciences. In terms

of collisions, this bifurcation involves an equilibrium and a cycle which, however, shrinks to a point when

the collision occurs. Figure 13 shows the two possible cases, known as supercritical and subcritical Hopf

bifurcations, respectively. In the supercritical case, a stable cycle has in its interior an unstable focus. When
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Figure 13: Hopf bifurcation: (A) supercritical; (B) subcritical.

the parameter is varied the cycle shrinks until it collides with the equilibrium and after the collision only

a stable equilibrium remains. By contrast, in the subcritical case the cycle is unstable and is the boundary

of the basin of attraction of the stable equilibrium inside the cycle. Thus, after the collision there is only a

repellor.

The normal form of the Hopf bifurcation is

ẋ1(t) = px1(t) − ωx2(t) + cx1(t)
(

x2
1(t) + x2

2(t)
)

,

ẋ2(t) = ωx1(t) + px2(t) + cx2(t)
(

x2
1(t) + x2

2(t)
)

),

which, in polar coordinates, becomes

ρ̇(t) = pρ(t) + cρ3(t),

θ̇(t) = ω.

This last form shows that the trajectory spirals around the origin at constant angular velocityω, while the

distance from the origin varies in accordance with the first ODE, which is the normal form of the pitchfork.

Thus, the stability of the cycle depends upon the sign ofc, called theLyapunov coefficient.

Taking into account Figures 11C and 12C, it is easy to check that the Hopf bifurcation is supercritical

[subcritical] if c < 0 [c > 0] (in the casec = 0 the system is linear and forp = p∗ = 0 the origin is
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neutrally stable and surrounded by an infinity of cycles). For p = p∗ the origin of the state space is stable in

the supercritical case and unstable in the opposite case. The Jacobian of the normal form, evaluated at the

origin, is

J =







p −ω

ω p






,

and its two eigenvaluesλ1,2 = p ± iω cross the imaginary axis of the complex plane whenp = 0. This is

the property commonly used to detect Hopf bifurcations in second-order systems. In fact, denoting byx̄(p)

an equilibrium of the system, the Jacobian evaluated atx̄(p) is

J =









∂f1

∂x1

∂f1

∂x2

∂f2

∂x1

∂f2

∂x2









x=x̄(p)

,

and such a matrix has a pair of nontrivial and purely imaginary eigenvalues if and only if

trace(J) =
∂f1

∂x1

∣

∣

∣

∣

x=x̄(p)

+
∂f2

∂x2

∣

∣

∣

∣

x=x̄(p)

= 0,

det(J) =
∂f1

∂x1

∣

∣

∣

∣

x=x̄(p)

∂f2

∂x2

∣

∣

∣

∣

x=x̄(p)

−
∂f1

∂x2

∣

∣

∣

∣

x=x̄(p)

∂f2

∂x1

∣

∣

∣

∣

x=x̄(p)

> 0.

In practice, one annihilates the trace of the Jacobian evaluated at the equilibrium and finds in this way the

parameter values that are candidate Hopf bifurcations. Then, the test on the positivity of the determinant ofJ

is used to select the true Hopf bifurcations among the candidates. Under suitable nondegeneracy conditions,

the emerging cycle is unique and its frequency isω =
√

det(J), because
√

det(J) = λ1λ2, while its

amplitude increases as
√

−c(p − p∗).

Determining if a Hopf bifurcation is supercritical or subcritical is not easy. One can try to find out if the

equilibrium is stable or unstable but this is quite difficultsince linearization is unreliable at a bifurcation.

Alternatively (but equivalently), one can determine the sign of the Lyapunov coefficientc by following a

procedure that is often quite cumbersome [see, e.g., Guckenheimer & Holmes, 1997, Kuznetsov, 2004] and

is therefore not reported here.

18



p > p∗p = p∗p < p∗

γ2

N
S

SNP P

γ1

Figure 14: Tangent bifurcation of limit cycles: two cyclesγ1 andγ2 collide forp = p∗ and then disappear.

Tangent Bifurcation of Limit Cycles

Other local bifurcations in second-order systems involve limit cycles and are somehow similar to transcrit-

ical, saddle-node, and pitchfork bifurcations of equilibria. In fact, the collision of two limit cycles can be

studied as the collision of the two corresponding equilibria of the Poincaré map defined on a Poincaré sec-

tion cutting both cycles. Thus, the transcritical, saddle-node, and pitchfork bifurcations of such equilibria

correspond to analogous bifurcations of the colliding limit cycles.

The most common case is the saddle-node bifurcation of limitcycles, more often called fold or tangent

bifurcation of limit cycles, where two cycles collide forp = p∗ and then disappear, as shown in Figure 14.

On the Poincaré sectionP the bifurcation is revealed by the collision of two equilibria of the Poincaré

map,S unstable andN stable, which then disappear. In terms of eigenvalue degeneracy, the eigenvalue of

the linearized Poincaré map evaluated atS [N ] is larger [smaller] than1, so that when the two equilibria

coincide, the eigenvalue of the unique linearized Poincar´e map must be equal to1.

Varying the parameter in the opposite direction, this bifurcation explains the sudden birth of a pair of

cycles, one of which is stable. While in the case of the Hopf bifurcation the emerging cycle is degenerate (it

has zero amplitude), in this case the emerging cycles are notdegenerate.

Flip (Period-doubling) Bifurcation

The flip bifurcation is the collision of two particular limitcycles, one tracing twice the other and therefore

having double period, in a three- (or higher-) dimensional state space. In the supercritical [subcritical] case,
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Figure 15: Flip bifurcation: (A) stable limit cycle of period T ; (B) unstable limit cycle of periodT and
stable limit cycle of period2T .

it corresponds to a bifurcation of a stable [unstable] limitcycle of periodT into a stable [unstable] limit cycle

of period2T and an unstable [stable] limit cycle of periodT , as sketched in Figure 15 (for the supercritical

case) just before and after the bifurcation.

Physically speaking, the stable limit cycle becomes only slightly different, but the key feature is that

the period of the limit cycle doubles through the bifurcation. In other words, if before the bifurcation the

graph of one of the state variables, sayx1, has a single peak in each periodT , after the bifurcation the

graph has two slightly different peaks in each period2T . On a Poincaré section, looking only at second

return points, the flip bifurcation resembles the pitchforkbifurcation, where two stable equilibria,z̄′ andz̄′′

(corresponding to the two intersections of the period-2T cycle with the Poincaré section), collides with a

third unstable equilibrium̄z (the intersection of the period-T cycle) and disappear, whilēz becomes stable.

Mathematically speaking, the flip bifurcation is characterized by a multiplier of the period-T cycle equal

to−1. In fact, when the cycle is unstable, the divergence from it,seen on a Poincaré section, is characterized

by (first) return points which tend to alternate between points z̄′ andz̄′′. This is due to a negative multiplier

< −1. Just after the bifurcation (from right to left in Figure 15), the cycle is stable but the multiplier is still

negative, between−1 and0, i.e., the multiplier is equal to−1 at the bifurcation.
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Figure 16: Neimark-Sacker bifurcation: (A) stable limit cycle; (B) unstable limit cycle and small stable
torus.

Neimark-Sacker (Torus) Bifurcation

This bifurcation, when supercritical, explains how a stable limit cycle can become a stable torus, by slightly

varying a parameter. Figure 16 clearly represents this bifurcation and shows that it can be interpreted (from

right to left) as the collision of a stable vanishing torus with an unstable limit cycle inside the torus. On

a Poincaré section, one would see a stable equilibrium (intersection of the cycle of Figure 16A with the

Poincaré section) bifurcating into an unstable equilibrium and a small regular closed curve (the intersection

of the torus of Figure 16B with the Poincaré section). In a sense, on the Poincaré section, one would

observe invariant sets with the same geometry observed in the case of the supercritical Hopf bifurcation

(see Figure 13A). For this reason, the Neimark-Sacker bifurcation is sometimes confused with the Hopf

bifurcation. Similarly, the subcritical Neimark-Sacker bifurcation resembles the subcritical Hopf bifurcation

(see Figure 13B).

In terms of cycle multipliers, the Neimark-Sacker bifurcation corresponds to a pair of complex conjugate

multipliers crossing the unit circle in the complex plane. When the cycle is stable, nearby trajectories

converge to the cycle by spiraling around it, while, when unstable, trajectories diverge from the cycle and

spiral toward the torus.

In a two-parameter space, the Neimark-Sacker bifurcation curve separates the region in which the system

has periodic regimes from that in which the asymptotic regime is quasi-periodic. However, as shown in
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Figure 17: Neimark-Sacker bifurcation curve and Arnold’s tongues emanating from it.

Figure 17, in the region where the attractor is a torus, thereare very narrow subregions, each delimited by

two curves merging on the Neimark-Sacker curve. In these subregions, calledArnold’s tongues, the attractor

is a cycle on torus, and the two curves delimiting each tongueare tangent bifurcations of limit cycles. The

points on the Neimark-Sacker curve from which the Arnold’s tongues emanate are therefore codimension-

2 bifurcation points. Although the Arnold’s tongues are infinitely many, but countable (generically, there

is a tongue for each possible(r1 : r2) pair characterizing a cycle on torus), only a few of them can be

numerically or experimentally detected, since the others are too thin. Nevertheless, the Arnold’s tongues are

quite important because they explain the subtle and intriguing phenomenon known asfrequency locking.

5 Global Bifurcations

As already said in Section 3, global bifurcations cannot be detected through the analysis of the Jacobians

associated with equilibria or cycles. However, they can still be viewed as structural changes of the charac-

teristic frame.

Heteroclinic Bifurcation

In Figure 9 we have already reported the bifurcation corresponding to the collision of a stable manifold of

a saddle with the unstable manifold of another saddle. This bifurcation is called heteroclinic bifurcation,
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Figure 18: Homoclinic bifurcation to standard saddle: forp = p∗ the stable manifoldX− of the saddle
S collides with the unstable manifoldX+ of the same saddle. The bifurcation can also be viewed as the
collision of the cycleγ with the saddleS.

since the trajectory connecting the two saddles is called heteroclinic trajectory (or connection).

Homoclinic Bifurcation

A special but important global bifurcation is the so-calledhomoclinic bifurcation, characterized by the

presence of a trajectory connecting an equilibrium with itself, called homoclinic trajectory (or connection).

There are two collisions that give rise to a homoclinic trajectory. The first and most common collision

is that between the stable and unstable manifolds of the samesaddle, as depicted in Figure 18. The second

collision, shown in Figure 19, is that between a node and a saddle whose unstable manifold is connected to

the node. The corresponding bifurcations are calledhomoclinic bifurcation to standard saddle, or simply

homoclinic bifurcation, andhomoclinic bifurcation to saddle-node.

Figure 18 shows that the homoclinic bifurcation to standardsaddle can also be viewed as the collision

of a cycleγ(p) with a saddleS(p). Whenp approachesp∗ the cycleγ(p) gets closer and closer to the saddle

S(p), so that the periodT (p) of the cycle becomes longer and longer, since the state of thesystem moves

very slowly when it is very close to the saddle. By contrast, Figure 19 shows that the homoclinic bifurcation

to saddle-node can be viewed as a saddle-node bifurcation ona cycleγ(p), which therefore disappears.

Whenp approachesp∗ the system “feels” the forthcoming appearance of the two equilibria and therefore

the state slows down close to the point where they are going toappear. Thus, in both cases,T (p) → ∞

asp → p∗ and this property is often used to detect homoclinic bifurcations through simulation. Another

property used to detect homoclinic bifurcations to standard saddles through simulation is related to the form
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Figure 19: Homoclinic bifurcation to saddle-node: forp = p∗ the unstable manifoldX+ of the saddle-node
SN comes back toSN transversally to the stable manifoldX−. The bifurcation can also be viewed as a
saddle-node bifurcation on the cycleγ.

of the limit cycle which becomes “pinched” close to the bifurcation, the angle of the pinch being the angle

between the stable and unstable manifolds of the saddle.

Looking at Figures 18 and 19 from the right to the left, we can recognize that the homoclinic bifurcation

explains the birth of a limit cycle. As in the case of Hopf bifurcations, the emerging limit cycle is degenerate,

but this time the degeneracy is not in the amplitude of the cycle but in its period, which is infinitely long.

The emerging limit cycles are stable in the figures (the gray region in Figure 18 is the basin of attraction),

but reversing the arrows of all trajectories the same figurescould be used to illustrate the cases of unstable

emerging cycles. In other words, homoclinic bifurcations in second-order systems are generically associated

with a cycle emerging from the homoclinic trajectory existing atp = p∗ by suitably perturbing the parameter.

It is interesting to note that the stability of the emerging cycle can be easily predicted by looking at the sign

of the so-calledsaddle quantityσ, which is the sum of the two eigenvalues of the Jacobian matrix associated

with the saddle, i.e., the trace of the Jacobian (notice thatone eigenvalue is equal to zero in the case of

homoclinic bifurcation to saddle-node). More precisely, if σ < 0 the cycle is stable, while ifσ > 0 the cycle

is unstable. As proved by Andronov and Leontovich [see Andronov et al., 1973], this result holds under a

series of assumptions that essentially rule out a number of critical cases. A very important and absolutely not

simple extension of Andronov and Leontovich theory is Shil’nikov theorem [Shil’nikov, 1968] concerning

homoclinic bifurcations in three-dimensional systems.
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6 Catastrophes, Hysteresis, and Cusp

We can now present a simple but comprehensive treatment of a delicate problem, that ofcatastrophic transi-

tionsin dynamical systems. A lot has been said on this topic in the last decades and the so-calledcatastrophe

theory[Thom, 1972] has often been invoked improperly, thus generating expectations that will never be sat-

isfied. Reduced to its minimal terms, the problem of catastrophic transitions is the following: assuming

that a system is functioning in one of its asymptotic regimes, is it possible that a microscopic variation of

a parameter triggers a transient toward a macroscopically different asymptotic regime? When this happens,

we say that a catastrophic transition occurs.

To be more specific, assume that an instantaneous small perturbation fromp to p + ∆p occurs at time

t = 0 when the system is on one of its attractors, sayA(p), or at a pointx(0) very close toA(p) in the

basin of attractionB (A(p)). A first possibility is thatp andp + ∆p are not separated by any bifurcation.

This implies that the state portrait of the perturbed systemẋ = f(x, p + ∆p) can be obtained by slightly

deforming the state portrait of the original systemẋ = f(x, p). In particular, if∆p is small, by continuity,

the attractorsA(p) andA(p + ∆p), as well as their basins of attractionB (A(p)) andB (A(p + ∆p)),

are almost coincident, so thatx(0) ∈ B (A(p + ∆p)). This means that after the perturbation a transition

will occur from A(p) (or x(0) close toA(p)) to A(p + ∆p). In conclusion, a microscopic variation of a

parameter has generated a microscopic variation in system behavior.

The opposite possibility is thatp andp+∆p are separated by a bifurcation. In such a case it can happen

that the small parameter variation triggers a transient, bringing the system toward a macroscopically different

attractor. When this happens for all initial statesx(0) close toA(p), the bifurcation is calledcatastrophic.

By contrast, if the catastrophic transition is not possible, the bifurcation is callednoncatastrophic, while in

all other cases the bifurcation is said to beundetermined.

We can now revisit all bifurcations we have discussed in the previous sections. Let us start with Figure 11

and assume thatp is small and negative, i.e.,p = −ǫ, thatx(0) is different from zero but very small, i.e.,

close to the stable equilibrium, and that∆p = 2ǫ so that, after the perturbation,p = ǫ. In case A (transcritical

bifurcation)x(t) → ǫ if x(0) > 0 andx(t) → −∞ if x(0) < 0. Thus, this bifurcation is undetermined

because it can, but does not always, give rise to a catastrophic transition. In a case like this, the noise acting

on the system has a fundamental role since it determines the sign of x(0), which is crucial for the behavior

of the system after the parametric perturbation. We must notice, however, that in many cases the sign ofx(0)
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Figure 20: Two systems with hysteresis generated by two saddle-node bifurcations (A), and a saddle-node
and a transcritical bifurcation (B).

is a priori fixed. For example, if the system is positive becausex represents the density of a population, then

for physical reasonsx(0) > 0 and the bifurcation is therefore noncatastrophic. However, under the same

conditions, the transcritical bifurcation of Figure 12A iscatastrophic. Similarly, we can conclude that the

saddle-node bifurcation of Figure 11B is catastrophic, as well as that of Figure 12B, and that the pitchfork

bifurcation can be noncatastrophic (as in Figure 11C) or catastrophic (as in Figure 12C).

From Figure 13 we can immediately conclude that the supercritical Hopf bifurcation is noncatastrophic,

while the subcritical one is catastrophic. This is why the two Hopf bifurcations are sometimes called catas-

trophic and noncatastrophic. Finally, Figures 14, 18, and 19 show that tangent and homoclinic bifurcations

are catastrophic.

When a small parametric variation triggers a catastrophic transition from an attractorA′ to an attractor

A′′ it is interesting to determine if it is possible to drive the system back to the attractorA′ by suitably

varying the parameter. When this is possible, the catastrophe is calledreversible. The most simple case

of reversible catastrophes is thehysteresis, two examples of which (concerning first-order systems) are

shown in Figure 20. In case A the system has two saddle-node bifurcations, while in case B there is a

transcritical bifurcation atp∗1 and a saddle-node bifurcation atp∗2. All bifurcations are catastrophic (because

the transitionsA → B andC → D are macroscopic) and ifp is varied back and forth betweenpmin < p∗1

andpmax > p∗2 through a sequence of small steps with long time intervals between successive steps, the

state of the system follows closely the cycleA → B → C → D indicated in the figure and calledhysteretic
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Figure 21: Equilibria and limit cycles (characteristic frame) of the Rosenzweig-MacArthur tritrophic food
chain model with constant superpredator populationp.

cycle(or, briefly, hysteresis). The catastrophes are therefore reversible, but after a transition fromA′ to A′′

it is necessary to pass through a second catastrophe to come back to the attractorA′. This simple type of

hysteresis explains many phenomena in physics, chemistry,and electromechanics, but also in biology and

social sciences. For example, the hysteresis of Figure 20B was used by Noy-Meir [1975] to explain the

possible collapse (saddle-node bifurcation) of an exploited population described by the equation

ẋ = rx
(

1 −
x

K

)

−
ax

1 + aτx
p,

wherex is resource density (e.g., density of grass) andp is the number of exploiters (e.g., number of cows).

If p is increased step by step (e.g., by adding one extra cow everyyear) the resource declines smoothly until

it collapses to zero when a thresholdp∗2 is passed. To regenerate the resource, one is obliged to radically

reduce the number of exploiters top < p∗1.

Hysteresis can be more complex than in Figure 20 not only because the attractors involved in the hys-

teretic cycle can be more than two, but also because some of them can be cycles. To show the latter pos-

sibility, we consider the so-called Rosenzweig-MacArthurmodel [Rosenzweig & MacArthur, 1963], that

describes the dynamics of a tritrophic food chain (x1: prey;x2: predator;p: superpredator) in which, how-

ever, the top population is (or is kept) constant. Without entering into the details of the analysis of this

second-order model [see Kuznetsovet al., 1995], we show in Figure 21 the equilibria and the cycles of the

system in the control space(p, x1, x2) for a specified value of all other parameters. The figure points out five
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Figure 22: Periodic variation of a predator population induced by a periodic variation of the superpredator.

bifurcations: a transcritical (TR), two homoclinic (h1 andh2), a supercritical Hopf (H), and a saddle-node

(SN ). Two of these bifurcations, namely the second homoclinich2 and the saddle-nodeSN , are catastrophic

and irreversible. In fact, catastrophic transitions fromh2 andSN bring the system toward the trivial equi-

librium (K, 0) (extinction of the predator population) and from this stateit is not possible to return toh2

or SN by varyingp step by step. By contrast, the two other catastrophic bifurcations, namely the first ho-

moclinic h1 and the transcriticalTR, are reversible and identify a hysteretic cycle obtained byvarying back

and forth the parameterp in an interval slightly larger than[pTR, ph1 ]. On one extreme of the hysteresis we

have a catastrophic transition from the equilibrium(K, 0) to a prey-predator limit cycle. Then, increasing

p, the period of the limit cycle increases (and tends to infinity asp → ph1), and on the other extreme of the

hysteresis we have a catastrophic transition from a homoclinic cycle (in practice a cycle of very long period)

to the equilibrium(K, 0). Thus, ifp is varied smoothly, slowly, and periodically from just below pTR to just

aboveph1, one can expect that the predator population varies periodically in time, as shown in Figure 22.

In conclusion, the predator population remains very scarcefor a long time and then suddenly regenerates,

giving rise to high-frequency prey-predator oscillationswhich, however, slow down before a crash of the

predator population occurs. Of course, tritrophic food chains do not always have such wild dynamics. In

fact, many food chains are characterized by a unique attractor and therefore cannot experience catastrophic

transitions and hysteresis.

An interesting variant of the hysteresis it the so-calledcusp, described by the normal form

ẋ = p1 + p2x − x3,
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Figure 23: Equilibria of the cusp normal form. The unstable equilibria are on the gray part of the surface,
which corresponds to the gray cusp region in the parameter space.

which is still a first-order system, but with two parameters.For p1 = 0 the equation degenerates into

the pitchfork normal form, while forp2 > 0 the equation points out a hysteresis with respect top1 with

two saddle-nodes. The graph of the equilibriax̄(p1, p2) is reported in Figure 23, which shows that for the

parameters(p1, p2) belonging to the cusp region in parameter space, the system has three equilibria, two

stable and one unstable (in the middle). In contrast with thehysteresis shown in Figure 20, this time after a

catastrophic transition from an attractorA′ to an attractorA′′ (transitionB → C in the figure), one can find

the way to come back toA′ without suffering a second catastrophic transition (pathC → D → A → B in

the figure).

7 Routes to Chaos

The bifurcations we have seen in the previous sections deal with the most common transitions from station-

ary to cyclic regimes and from cyclic to quasi-periodic regimes. Only one of them, namely the homoclinic

bifurcation in third-order systems, can mark, under suitable conditions specified by Shil’nikov theorem, the

transition from a cyclic regime to a chaotic one. In an abstract sense, the Shil’nikov bifurcation is respon-

sible of one of the most known “routes to chaos”, calledtorus explosion, characterized by the collision in
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Figure 24: Torus explosion route to chaos viewed on a Poincaré section: (A) regular torus; (B) pinched
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Figure 25: The Feigenbaum route to chaos: forp ≤ p1 the attractor is a cycle; forp1 < p < p∞ the attractor
is a longer and longer cycle; forp ≥ p∞ the attractor is a strange attractor.

a three-dimensional state space of a saddle cycle with a stable torus. Observed on a Poincaré section, the

bifurcation is revealed by a gradual change in shape of the intersection of the torus with the Poincaré section,

shape which becomes more and more pinched while approachingthe collision with the saddle cycle. After

the collision, the torus breaks into a complex fractal set which, however, retains the geometry of a pinched

closed curve, as shown in Figure 24.

Another, and perhaps most known, route to chaos is theFeigenbaum cascade, which is an infinite se-

quence{pi} of flip bifurcations where thepi’s accumulate at a critical valuep∞ after which the attractor is

a genuine strange attractor. Very often, this route to chaosis depicted by plotting the local peaks of a state

variable, sayx1, as a function of a parameterp, as shown in Figure 25. Physically speaking, the attractor

remains a cycle untilp = p∞, but the period of the cycle doubles at each bifurcationpi, while unstable,
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actually saddle, cycles of longer and longer periods accumulate in state space. This route to chaos points

out a general property of strange attractors, namely the fact that they are basically composed by an aperiodic

trajectory visiting a bounded region of the state space densely filled of saddle cycles, repelling along some

directions (stretching) and attracting along others (folding).

8 Numerical Methods and Software Packages

All effective software packages for numerical bifurcationanalysis are based oncontinuation(see, e.g.,

Keller, 1977, Allgower & Georg, 1990, Doedelet al., 1991a,b, Beynet al., 2002, Kuznetsov, 2004, Chap-

ter10), which is a general method for producing inR
q a curve defined by(q − 1) equations

F1(w1, w2, . . . , wq) = 0,

F2(w1, w2, . . . , wq) = 0,

...

Fq−1(w1, w2, . . . , wq) = 0,

or, in compact form,

F (w) = 0, w ∈ R
q, F : Rq → R

q−1. (13)

Given a pointw(0) that is approximately on the curve, i.e.,F (w(0)) ≃ 0, the curve is produced by generating

a sequence of pointsw(i), i = 1, 2, . . ., that are approximately on the curve (i.e.,F (w(i)) ≃ 0), as shown in

Figure 26A. Theith iteration step, fromw(i) to w(i+1), is a so-called prediction-correction procedure with

adaptive step-size and is illustrated in Figure 26B. The prediction hv(i) is taken along the direction tangent

to the curve atw(i), wherev(i) is computed as the vector of length1 such that∂F/∂w|w=w(i)v(i) = 0, the

absolute value ofh, called the step-size, is the prediction length, and the sign of h controls the direction

of the continuation. Then, suitable corrections try to bring the predicted point back to the curve with the

desired accuracy, thus determiningw(i+1). If they fail, the step-size is reduced and the corrections are tried

again until they succeed or the step-size goes below a minimum threshold at which the continuation halts

with failure. By contrast, if corrections succeed at the first trial, the step-size is typically increased.

Given a second-order systeṁx = f(x, p), wherep is a single parameter, assume that an equilibrium
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Figure 26: Generation of the curve defined by (13) through continuation.

x2

x1

p

φ′=0
φ′=0

φ′′=0

(x̄(0), p(0))

Figure 27: The curvēx(p) produced from(x̄(0), p(0)) through continuation in the three-dimensional control
space(p, x1, x2) and three bifurcation points, detected through the annihilation of the bifurcation functions
φ′ andφ′′.

x̄(0) is known forp = p(0). Thus, starting from point(x̄(0), p(0)) in R
3, the equilibriax̄(p) can be easily

produced, as shown in Figure 27, through continuation by considering (13) with

F (w) = f(x, p), w =







x

p






.

Moreover, at each step of the continuation, the JacobianJ(x̄(p), p) and its eigenvaluesλ1(p) andλ2(p) are

numerically estimated and a few indicatorsφ(x̄(p), p), calledbifurcation functions, are computed. These

indicators annihilate at specific bifurcations, as shown inFigure 27. For example,φ′ = det(J) is a bifur-
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cation function of transcritical, saddle-node, and pitchfork bifurcations, since at these bifurcations one of

the eigenvalues of the Jacobian matrix is zero and det(J) = λ1λ2. Similarly, φ′′ = trace(J) is a Hopf

bifurcation function (see Section 4). Once a parameter value annihilating a bifurcation function has been

found, a few simple tests are performed to check if the bifurcation is really present or to detect which is

the true bifurcation within a set of potential ones. For example, as clearly pointed out by Figure 11B, at a

saddle-node bifurcation thep-component of the vector tangent to the curvex̄(p) annihilates. By contrast,

at transcritical and pitchfork bifurcations (see Figures 11A and C) two equilibrium curves, one of which is

x̄(p), transversally cross each other, so that there are two tangent vectors atp = p∗, one with a vanishingp-

component in the pitchfork case. Analogously, ifφ′′(x̄(p∗), p∗) = 0 one must first check thatφ′(x̄(p∗), p∗)

is positive before concluding thatp = p∗ is a Hopf bifurcation (see Section 4).

Once a particular bifurcation has been detected through theannihilation of its bifurcation functionφ, it

can be continued by activating a second parameter. For this,(13) is written with

F (w) =







f(x, p)

φ(x, p)






, w =







x

p






,

wherew is now four dimensional sincep is a vector of two parameters. If the curve obtained through

continuation inR4 is projected on the two-dimensional parameter space, the desired bifurcation curve is

obtained.

In the case of local bifurcations of limit cycles and global bifurcations, the functionsφ are quite complex

and their evaluation requires the solution of the ODEsẋ = f(x, p). Actually, a rigorous treatment of the

problem brings one naturally to the formulation of two-boundary-value problems [Doedelet al., 1991b,

Beyn et al., 2002]. For example, as shown in Figure 28, homoclinic bifurcations can be detected by the

function φ = z+ − z−, wherez+ andz− are the intersections of the unstable and stable manifolds of the

saddle with an arbitrary axisz passing through the saddle. Thus,φ is zero if and only if the saddle has a

homoclinic connection.

Many are the available software packages for bifurcation analysis, but the most interesting ones are

AUTO [Doedel, 1981, Doedelet al., 1997, 2007], LOCBIF [Khibniket al., 1993], CONTENT [Kuznetsov

& Levitin, 1997], and MATCONT [Dhoogeet al., 2002]. They can all be used to study systems with more

than two state variables and they can detect and continue allbifurcations mentioned in this chapter. AUTO is
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z+

z
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z−
X+
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Figure 28: The bifurcation functionφ = z+ − z− is zero when there is a homoclinic bifurcation, i.e., when
the stable and unstable manifoldsX− andX+ of the saddle collide.

the most popular software for bifurcation analysis and is particularly suited for the analysis of global bifurca-

tions. LOCBIF is more effective than AUTO for local bifurcations, since it can also continue codimension-2

bifurcations. However, LOCBIF runs only on MS-DOS and has therefore been reimplemented and improved

in CONTENT, which runs on several software platforms. MATCONT, continuously updated, is aimed at

encapsulating the best features of all previously mentioned software packages in a MATLAB environment.
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