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Summary

In this chapter we summarize the basic definitions and tda@salysis of dynamical systems, with particular
emphasis on the asymptotic behavior of continuous-timerewmous systems. In particular, the possible
structural changes of the asymptotic behavior of the systeder parameter variation, called bifurcations,
are presented together with their analytical charactéoizaand hints on their numerical analysis. The
literature on dynamical systems is huge and we do not attéongarvey it here. Most of the results on
bifurcations of continuous-time systems are due to Andvaarad Leontovich [see Andronaat al., 1973].
More recent expositions can be found in Guckenheimer & Helfh897] and Kuznetsov [2004], while less
formal but didactically very effective treatments, richiimeresting examples and applications, are given
in Strogatz [1994] and Alligooe@t al.[1996]. Numerical aspects are well described in Allgower &0®)
[1990] and in the fundamental papers by Keller [1977] andd2bet al.[19914a,b], but see also Bewt al.
[2002] and Kuznetsov [2004]. This chapter mainly combin@saral from two previous contributions of the
authors, the first part of the bo@iosystems and Complex(fginaldi, 1993, in Italian] and the Appendix A

of a recent book on evolutionary dynamics [Dercole & Rinakfi08].



1 Dynamical Systemsand State Portraits

The dynamical systems considered in this chaptercarginuous-timgfinite-dimensionadynamical sys-
tems described by, autonomoudi.e., time-independent) ordinary differential equaio{©®DES) called

state equations.e.,

il(t) = fl(xl(t)7x2(t)7"' ’xn(t))>
iQ(t) = f2($1(t)7x2(t)7"' ’xn(t))>

xn(t) = fn(xl(t)vm?(t)? cee ,.In(t))7

wherez;(t) € R, 1 = 1,2,...,n, is theith state variableat timet € R, #;(¢) is its time derivative, and
functionsfy, ..., f,, are assumed to be smooth.

In vector form, the state equations are

B(t) = f(x(t)), (1)

wherez and:i aren-dimensional vectors (thstate vectorand its time derivative) and = [f1,..., fa]”
(the T superscript denotes transposition).

Given the initial stater(0), the state equations uniquely defindrajectory of the system, i.e., the
state vectorz(t) for all ¢ > 0. A trajectory is represented in state space by a curve rggafitom point
x(0), and vectori(t) is tangent to the curve at poin{t). Trajectories can be easily obtained numerically
through simulation (numerical integration) and the setlidfajectories (one for any(0)) is called thestate
portrait. If n = 2 (second-ordeor planar systems) the state portrait is often represented by draaviugt of
gualitative skeleton, i.e., strategic trajectories (ottdisegments of them), from which all other trajectories
can be intuitively inferred. For example, in Figure 1A thelskon is composed df3 trajectories: three of
them (4, B, C) are just points (corresponding to constant solutions Pfdfd are calleequilibria, while
one(v) is a closed trajectory (corresponding to a periodic sotutib (1)) called dimit cycle The other
trajectories allow one to conclude thatis arepellor (no trajectory starting close td tends or remains

close toA), B is asaddle(almost all trajectories starting close fhgo away fromB, but two trajectories
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Figure 1: Skeleton of the state portrait of a second-ordstesy. (A) skeleton with 3 trajectories; (B)
reduced skeleton (characteristic frame) wdttrajectories (attractors, repellors, and saddles withistand

unstable manifolds).
}A

Figure 2: An example of unstable attractor: the equilibridm

tend toB and compose the so-callasthble manifolgdthe two trajectories emanating frof compose the
unstable manifolcand both manifolds are also calledddle separatricgs while C' and~ are attractors
(all trajectories starting close © [4] tend toC [v]). Attractors are said to beagymptotically stableif
all nearby trajectories remain close to thagtgbally stableif they attract all initial conditions (technically
with the exclusion of sets with no measure in state spacd)e whddles and repellors anaestable Notice,
however, that attractors can also be unstable, as showrgimd=R2, where the equilibrium attracts all
nearby initial conditions, part of which along trajecterigoing away from it.

The skeleton of Figure 1A also identifies thasin of attractionof each attractor: in fact, all trajectories
starting above [below] the stable manifold of the saddle tiemvard the limit cycley [the equilibriumC1.

Notice that the basins of attraction are open sets sinceltbendaries are the saddle and its stable manifold.



Often, the full state portrait can be more easily imagine&mvthe skeleton is reduced, as in Figure 1B, to
its basic elements, namely attractors, repellors, andesadth their stable and unstable manifolds. From
now on, the reduced skeleton is called tharacteristic frame

The asymptotic behaviors of continuous-time second-agystiems are quite simple, because in the case
n = 2 attractors can be equilibrisgstationary regimesor limit cycles gyclic or periodic regimels But in
higher-dimensional systems, i.e., fer> 3, more complex behaviors are possible since attractorslsan a
betori (quasi-periodic regim@sor strange attractorgchaotic regimep

A torus attracting nearby trajectories is sketched in Fd2A&. A trajectory starting from a point of the
torus remains forever on it (1.e., the torusrigariant for the dynamics of the system) but, in general, never
passes again through the starting point. For example, eguéncies characterize a three-dimensional torus,
namely two positive real numbers/T}, 1/T,, measuring the number of rotations around the cross-sectio
of the torus and the number of revolutions along it, per uftiinoe. Generically, the rati@} /T is irrational,
so that there is no peridfl such that

T ="1Tiry = Tory, (2

with r; andr, positive integers. In words, there is no tirfien which a trajectory on the torus carries out
an integer number of cross-section rotations and an intpgesibly different, number of torus revolutions,
i.e., no timeT after which the trajectory revisit the starting point. Asansequence, a single trajectory on
the torus covers it densely in the long-run, and the cormdipg regime is called quasi-periodic, being the
result of two (or more in higher-dimensions) frequencies.

In special cases, however, the rafip/7, can be rational, i.e., trajectories on torus can be periodic
((r1: o) cycles on torusfor the minimumyr; andr, satisfying (2)), A cycle on torus can be stable (i.e.,
attracting nearby trajectories on torus) or unstable. Buoious topological reasons, the existence of a stable
(r1:r2) cycle on torus requires the existence of an unstéhlers) cycle on the same torus, and rules out
cycles characterized by different pairs.

A strange attractor (a sort of “tangle” in state space) isshim Figure 3B. Trajectories starting in the
vicinity of the tangle tend to it and then remain in it forev&@he most striking difference among attractors
is that equilibria, cycles, and tori have integer dimengigri, and2, respectively), while strange attractors
arefractal sets and therefore have noninteger dimension (see nextechafnother important difference is

that two trajectories starting from very close points in #raator remain very close forever if the attractor
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Figure 3: Sketch of an attracting torus (A) and of a strangactor (B).

is an equilibrium, a cycle, or a torus, while they alternglffvdiverge étretching and convergef¢lding)
forever if the attractor is a tangle. The mean rate of divacgeof nearby trajectories is measured by the
so-calledLyapunov exponentand turns out to be the most important indicator in the stfdyeterministic
chaos (see Chapter 14).

In the simple but very important case of linear systems

x(t) = Ax(t),

the state portrait can be immediately obtained from therm@ees and eigenvectors of thex n matrix

A (we recall that the eigenvalues of anx n matrix A are the zeros\, Ao, ..., A\, of its characteristic
polynomialdet(AI — A), wheredet denotes matrix determinant, and that the eigenvectorsiassd with

an eigenvalue\; are nontrivial vectors:(?) satisfying the relationshiplz® = X\;z(). There are five
generic state portraits of second-order continuous-timeal systems: three of them are shown in Figure 4
(the other two are obtained from cases A and B by reversingsitiie of the eigenvalues and all arrows
in the state portraits). When the two eigenvalues are com(glese A), the trajectories spiral around the
origin and tend to [diverge from] it if the real part of the eiyalues is negative [positive]. By contrast,
when the two eigenvalues are real (cases B and C), the tEgstdo not spiral and there are actually
special straight trajectories (corresponding to the eigetiors) converging to [diverging from] the origin
if the corresponding eigenvalue is negative [positive].og the straight trajectories both state variables
vary in time asexp(A;t), while along all other trajectories they follow a more complaw of the kind

c1 exp(A\it) 4+ co exp(Aat). Since in generic caseg # Ao, one of the two exponential functions dominates

the other fort — 400 and all curved trajectories tend to align with one of the tivaight trajectories. In
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Figure 4: Three state portraits of generic second-ordetiraayus-time linear systemsa{ # Ao, both with
nonzero real part, see the complex plane associated withpsatel): (A) (stable focus) and (B) (stable
node) are attractors; the unstable focus (positive realgoanplex conjugate eigenvalues) and the unstable
node (positive real eigenvalues) (repellors) are obtamedeversing all arrows in the state portraits (A)
and (B), respectively; (C) is a saddle. Straight trajeemiiorrespond to eigenvectors associated with real
eigenvalues. Double arrows indicate the straight trajegg@long which the state varies more rapidly.

particular, in the case of a stable node (characterized,by: \; < 0, see Figure 4B), both exponential
functions tend to zero far — +o0, but in the long rurexp(A1t) > exp(Aot) so that all trajectories, except
the two straight trajectories corresponding to the secageneectorz(?), tend to zero tangentially to the
first eigenvector:(V).

Very similar definitions can be given foliscrete-time systentescribed by difference state equations

of the form

w(t+1) = fz(t)), ®3)

where the time is an integer. In this case trajectories are sequences ofspioi state space and, again,
asymptotic regimes can be stationary, cyclic, quasi-pérjoand chaotic. The major difference between
continuous-time and discrete-time dynamical systemsaisttite former are alwaygversible since under
very general conditions system (1) has a unique solutioh 00, while the latter can bireversible This
implies that discrete-time systems can have quasi-periami chaotic regimes evenvif= 1.

The equilibria of system (1) can be found by determining @llisons z of (1) with & = 0. In second-
order systems the equilibria are often determined grapitdarough the so-calledsoclines which are
nothing but the lines in state space on whfgtw, z2) = 0 (z1-isoclines) andfz(z1, x2) = 0 (z2-isoclines).
Obviously, the equilibria are at the intersections:gf andx,-isoclines. Moreover, all trajectories crass

[z2-] isoclines vertically [horizontally] becausg [is] is zero onxq- [x2-] isoclines. This property is often



useful for devising qualitative geometric features of ttaesportrait.
The stability of an equilibriumz is not as easy to ascertain. However, it can very often bausksd
throughlinearization i.e., by approximating the behavior of the system in théniti¢ of the equilibrium

through a linear system. This can be done in the following. Wway

ox(t) = z(t) — z,

so that

ox(t) = f(T 4 dx(t)).

Under very general conditions, we can expand the funcfionTaylor series, thus obtaining

.0
Selt) = F@)+ 9| da(t) + Ol (D)),
where|| - || is the standard norm iR™ and O(||5x(t)||?) stays for a term that vanishes {8 (¢)|> when

dz(t) — 0. Noticing thatf (z) = 0, sincez is a constant solution of (1), we have

. 0
se(t) = 2L\ 5alt) + O(lsa0)]?), @
where then x n constant matrix
oh  Oh
6901 8£Cn
Cof | .

J = rr i : (5)

0x1 0%y | yez

is called theJacobian matrix(or, more simply,Jacobia. One can easily imagine that, under suitable
conditions, the behavior of system (4) (which is still systil)) can be well approximated in the vicinity of

z, by the so-calledinearized systepwhich, by definition, is

ox(t) = of ox(t). (6)

ax T=T

This is, indeed, the case. In particular, it can be shownitlia¢ solutiondz(t) of (6) tends ta for all
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Figure 5: A stable limit cycley, the Poincaré sectio®, and the sequenceg0), z(1), z(2), ... of return
points.

dz(0) # 0 (as in Figures 4A and B), then the same is true for system @Wiged ||6x(0)|| is sufficiently
small. In other words, the stability of the linearized systieplies the (local) stability of the equilibrium.
This result is quite interesting because the stability eflthearized system can be numerically ascertained
by checking if all eigenvalues;, i = 1, ..., n, of the Jacobian matrix (5) have negative real part. A simila
result holds also for the case of unstable equilibria. Maezxigely, if at least one eigenvalug of the
Jacobian matrix has positive real part (as in Figure 4C) the equilibriumz is locally unstable (i.e., the
solution of (4) diverges at least temporarily from zero foitable (0), no matter how smalldz(0)|| is).
Similarly, the local stability of an equilibrium of a dist¢ectime system of the form (3) can be studied by
simply looking at the modulé)\;| of the n eigenvalues\;. In fact, if all |\;| < 1, i.e., if all eigenvalues
are inside the unit circle in the complex plane, the equilitoris stable, while if at least one eigenvalue is
outside the unit circle|4;| > 1), the equilibrium is unstable.

The study of the stability of limit cycles can also be carried through linearization, following a very
simple idea suggested by Poincaré (see Figure 5). In tleeafasecond-order systems (see Figure 5A) the
Poincaré method consists in cutting locally and transtrshe limit cycle with a manifoldP, called the
Poincaé sectionand looking at the sequeneé)), z(1), z(2), ... of points of return of the trajectory tB.

SinceP is one dimensionak;(t) is a scalar coordinate oR and the state equation (1) implicitly defines a



first-order discrete-time system called P&inca map
z(t+1) = P(z(t)). (7)

The intersectiorr of the limit cycle~ with P is an equilibrium of the Poincaré map (since= P(z)) and~y
is stable if and only if the equilibriung of (7) is stable. One can therefore use the linearizatiohnigce,
by taking into account that the eigenvalue of the lineariPethcaré mapdP/dz|.—z (called theFloquet
multiplier, or simply multiplier, of the cycle), cannot be negativencs trajectories cannot cross each other.

Thus, a sufficient condition for the (local) stability of theit cycle + is

dP

dz |,_;

<1, (8)

while the reverse inequality implies the instability-af

Similarly, in the case of third-order systems (see FigurgthB Poincaré section is a two-dimensional
manifold P and the points of return(0), z(1), z(2), ... are generated by a two-dimensional Poincaré map
(7). Again, the cycle is stable if and only if the equilibriunof the discrete-time system (7) is stable. Thus,
if the two multipliers of the cycle, i.e., the two eigenvaduef the Jacobian matri®P/0z|.—z, are smaller
than1 in module, the cycley is stable, while if the module of at least one multiplier ieaper thanl the
cycle is unstable. These sufficient conditions for the $tgtand instability of a cycle can obviously be
extended to the-dimensional case, whet#’/0z|.—z is an(n — 1) x (n — 1) matrix. It must be noticed,
however, that they can only be verified numerically, sineedycle is, in general, not known analytically.

The Poincaré section is also very useful for distinguighguasi-periodic from chaotic regimes in third
order systems. In fact, a torus appears on a Poincarésestimregular closed curve, while strange attractors

appear as clouds of points (with fractal geometry), as shovigure 6.

2 Structural Stability

Structural stabilityis a key notion in the theory of dynamical systems, sincerieisded to understand inter-
esting phenomena like catastrophic transitions, bistgbilysteresis, frequency locking, synchronization,

subharmonics, deterministic chaos, as well as many otfibisfinal target of structural stability is the study



Figure 6: The image of a strange attractor on a Poincar@égsect

of the asymptotic behavior of parameterized families ofadygital systems of the form

x(t) = f(x(t),p), 9)

for continuous-time systems, and

.%'(t—i—l) :f(.%'(t),p), (10)

for discrete-time systems, whepas a vector of constargarameters Given the parameter vectpr all the
definitions that we have seen in the previous section applyegarticular dynamical system of the family
identified byp. Thus, all geometric and analytical properties of syste®)safd (10), e.g., trajectories,
state portrait, equilibria, limit cycles, their stabiliand associated Jacobian matrices and Poincaré maps, the
basins of attraction, and, consequently, the asymptotiaier of the system, now depend upan

Structural stability allows one to rigorously explain whgraall change in a parameter value can give rise
to a radical change in the system behavior. More precidedyaim is to find region®; in parameter space
characterized by the same qualitative behavior of syst¢nm(the sense that all state portraits corresponding
to valuesp € P; are topologically equivalent (i.e., they can be obtainee foom the other through a simple
deformation of the trajectories). Thus, varyinge P; the system conserves all the characteristic elements
of the state portrait, namely its attractors, repellorg] saddles. In other words, whenis varied inP;,
the characteristic frame varies but conserves its strectiigure 7 shows the typical result of a study of
structural stability in the spade, p2) of two parameters of a second-order system. The parametee sp
is subdivided into three region®;, P», andPs, and for all interior points of each one of these regions the

state portrait is topologically equivalent to that skettiethe figure. IrP; the system is an oscillator, since

10
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Figure 7: Bifurcation diagram of a second-order system. duvges separating regiofty, P, andPs are
bifurcation curves.

it has a single attractor, which is a limit cycle. Also there is a single attractor, which is, however, an
equilibrium. Finally, inP; we havebistability since the system has two alternative attractors (two dxiai);,
each with its own basin of attraction delimited by the stabbmifold of the saddle equilibrium.

If p is an interior point of a regiomP;, system (9) is said to bstructurally stableat p since its state
portrait is qualitatively the same as those of the systenairdxd by slightly perturbing the parameters in
all possible ways. By contrast, jifis on the boundary of a regioR; the system is not structurally stable
since small perturbations can give rise to qualitativeffedent state portraits. The points of the boundaries
of the regionsP; are calledbifurcation points and, in the case of two parameters, the boundaries arel calle
bifurcation curves Bifurcation points are therefore points of degeneracyhdify lie on a curve separating
two distinct regions?; andP;, i # j, they are called codimensidnbifurcation points, while if they lie on
the boundaries of three distinct regions they are calleédhoexaksion?2 bifurcation points, and so on.

Notice that the simplest dynamical system, namely the dirder linear systemi(t) = pz(t), has a
bifurcation atp = p* = 0, i.e., when its eigenvalug is equal to zero. In fact, such a system is stable for
p < 0 and unstable fop > 0, while it is neutrally stable (i.e., the equilibrium= 0 is not unstable but does
not attract all nearby trajectories) fpr= p* = 0.

In the following, we mainly focus on second-order, continsitime systems and limit the discussion to

11
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Figure 8: Example of local bifurcation: saddle-node bidian.

codimensiont bifurcations.

3 Bifurcationsas Collisions

A generic element of the parameterized family of dynamigateams (9) must be imagined to be structurally
stable because j is selected randomly it will be an interior point of a regi®h with probability 1. In
generic conditions, attractors, repellors, saddles, heil stable and unstable manifolds are separated one
from each other. Moreover, the eigenvalues of the Jacobaricas associated with equilibria have nonzero
real parts, while the eigenvalues of linearized Poincaa@srassociated with cycles have module different
from 1. By continuity, small parametric variations will induce alnvariations of all attractors, repellors,
saddles, and their stable and unstable manifolds whichebexvwill remain separated if the parametric
variations are sufficiently small. The same holds for therewglues of Jacobian matrices and linearized
Poincaré maps, which, for sufficiently small parametrigations, will continue to be noncritical. Thus, in
conclusion, starting from a generic condition, it is neeeggo vary the parameters of a finite amount to
obtain a bifurcation, which is generated by the collisiotvad or more elements of the characteristic frame,
which then changes its structure at the bifurcation, thushitng a change of the state portrait of the system.
A bifurcation is calledocal when it involves the degeneracy of some eigenvalue of thebiats as-
sociated with equilibria or cycles. For example, the bifttien described in Figure 8, callexhddle-node
bifurcation is a local bifurcation. Indeed, the bifurcation can be \d@dvas the collision, gt = p*, of two
equilibria: forp < p* the two equilibria (elements of the characteristic franre)distinct and one is stable

(the nodeN) while the other is unstable (the saddl® Then, ag increases, the two equilibria approach

12



S

— +
X2 Xl
————é’s\
S
p<p* p=rp" p>p*

Figure 9: Example of global bifurcation: heteroclinic bifation.

one each other and finally collide when= p* (and then disappear). Notice that the characteristic fiame
degenerate at = p* because it is composed of one element (an equilibrium),evthégre are two equilibria
for p < p* and none fop > p*. But the bifurcation can also be interpreted in terms of migkie de-
generacy. In fact, the eigenvalues of the Jacobian evaladtihe saddle are one positive and one negative,
while the eigenvalues of the Jacobian evaluated at the med®th negative, so that when the two equilibria
coincide, one of the two eigenvalues of the unique Jacobmixrmust be equal to zero.

By contrastglobal bifurcationscannot be revealed by eigenvalue degeneracies. One ex&m@en as
heteroclinic bifurcationis shown in Figure 9, which presents the characteristinés(two saddles and their
stable and unstable manifolds) of a systenyfes p* (bifurcation value) and fop # p*. The characteristic
frame forp = p* is structurally different from the others because it cqoggls to the collision of the
unstable manifoldX;" of the first saddle with the stable manifo, of the second saddle. However,
the two Jacobian matrices associated with the two saddle®iddegenerate at*, since their eigenvalues
remain different from zero. In other words, the bifurcat@annot be revealed by the behavior of the system
in the vicinity of an equilibrium, but is the result of the blal behavior of the system.

When there is only one parametesind there are various bifurcations at different values®pérameter,
it is often advantageous to represent the dependence ofstersbehavior upon the parameter by drawing
in the three-dimensional spa¢e =1, z2), often calledcontrol spacethe characteristic frame for all values
of p. This is done, for example, in Figure 10 for the same systesardeed in Figure 7, with = p; and
constanp,. Figure 10 shows that for increasing value® afso-calledHopf bifurcationoccurs, as the stable

limit cycle shrinks to a point, thus colliding with the uniska equilibrium that exists inside the cycle. This

13
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Figure 10: Characteristic frame in the control space of gegsysvith a Hopf and a saddle-node bifurcation.
Continuous lines represent trajectories in the threetitibsd state portraits and stable equilibria or limit
cycles otherwise; dashed lines represent unstable egguilibhe symbolsP;, P,, andPs refer to Figure 7.

is a local bifurcation, because the equilibrium is stablehigher values op, so that the bifurcation can

be revealed by an eigenvalue degeneracy. The figure alssghatva saddle-node bifurcation occurs at a
higher value of the parameter, as two equilibria, namelpblstnode and a saddle, become closer and closer
until they collide and disappear. The Hopf and the sadderufurcations are perhaps the most popular

local bifurcations of second-order systems and are disclisssome detail in the next section.

4 Local Bifurcations

In this section we discuss the seven most important locatdations of continuous-time systems. Three
of them, calledtranscritical, saddle-node (already encountered above), @twthfork can be viewed as
collisions of equilibria. Since they can occur in first-arédgstems, we present them in that context. The
other bifurcations involve limit cycles. Two of them can acin second-order systems, namely the Hopf
bifurcation (already seen), i.e., the collision of an eiguilim with a vanishing cycle, and thangent of limit
cycles which is the collision of two cycles. The last two bifuraats, theflip (or period-doubling and the
Neimark-Sackefor torus), are more complex because they can occur only in threeidbeh) dimensional

systems. The first is a particular collision of two limit cgs| one with period double than the other, while

14
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Figure 11: Three local bifurcations viewed as collisiong@ilibria: (A) transcritical; (B) saddle-node; (C)
pitchfork.

the second is the collision between a cycle and a vanishing.to

Transcritical, Saddle-Node, and Pitchfork Bifurcations

Figure 11 shows three different types of collisions of atid in first-order systems of the form (9). The
statex and the parametgr have been normalized in such a way that the bifurcation scaty* = 0 and
that the corresponding equilibrium is zero. Continuousdiim the figure represent stable equilibria, while
dashed lines indicate unstable equilibria. In Figure 11& dbllision is visible in both directions, while

in Figures 11B and C the collision is visible only from thetlef from the right. The three bifurcations
are called, respectively, transcritical, saddle-nodé, @tchfork, and the three most simple state equations

(callednormal form$ giving rise to Figure 11 are

@(t) = px(t) — 2%(t),  transcritical (11a)
i(t) =p+a%(t), saddle-node (11b)
i(t) = px(t) — 23(t),  pitchfork. (11c)

The first of these bifurcations is also calle’change of stabilitgince the two equilibria exchange their
stability at the bifurcation. The second is called saddidenbifurcation because in second-order systems it
corresponds to the collision of a saddle with a node, as shwigure 8, but it is also known dsld, in
view of the form of the graph of its equilibria. Due to the syetny of the normal form, the pitchfork has

three colliding equilibria, two stable and one unstablenmmiddle.

15
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Figure 12: Bifurcation diagrams corresponding to the nofiorans (12).

It is worth naticing that in changing the sign of the quadratind cubic terms in the normal forms (11),

three new normal forms are obtained, namely

i(t) = px(t) + 2%(t),  transcritical (12a)
i(t) =p—2%(t), saddle-node (12b)
@(t) = px(t) + 23(t),  pitchfork, (12c)

which have the bifurcation diagrams shown in Figure 12. Caming Figures 11 and 12, it is easy to
verify that nothing changes from a phenomenological pdiniew in the first two cases. However, for the
pitchfork bifurcation this is not true, since in case (11wre is at least one attractor for each value of the
parameter, while in case (12c), for> 0, there is only a repellor. To distinguish the two possieitit the

pitchfork (11c) is calledsupercritical while the other is calledubcritical

Hopf Bifurcation

The Hopf bifurcation (actually discovered by A. A. Andronfov second-order systems; see Androebael.,
1973, and Marsden & McCracken, 1976, for the English traiaslaof Andronov and Hopf’s original works)
explains how a stationary regime can become cyclic as a quesee of a small variation of a parameter, a
rather common phenomenon not only in physics but also irgigleconomics, and life sciences. In terms
of collisions, this bifurcation involves an equilibriumaaa cycle which, however, shrinks to a point when
the collision occurs. Figure 13 shows the two possible ¢dgesvn as supercritical and subcritical Hopf

bifurcations, respectively. In the supercritical caseahle cycle has in its interior an unstable focus. When
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Figure 13: Hopf bifurcation: (A) supercritical; (B) subtical.

the parameter is varied the cycle shrinks until it collidathvthe equilibrium and after the collision only

a stable equilibrium remains. By contrast, in the subaitzase the cycle is unstable and is the boundary
of the basin of attraction of the stable equilibrium insitle tycle. Thus, after the collision there is only a
repellor.

The normal form of the Hopf bifurcation is

@1(t) = pri(t) — wra(t) + car(t) (23(t) + 23(t)) ,

da(t) = wri(t) + paa(t) + caa(t) (21(t) + 23(t))),

which, in polar coordinates, becomes

This last form shows that the trajectory spirals around tligiroat constant angular velocity, while the
distance from the origin varies in accordance with the filSEQwhich is the normal form of the pitchfork.
Thus, the stability of the cycle depends upon the sign oélled theLyapunov coefficient

Taking into account Figures 11C and 12C, it is easy to cheakttie Hopf bifurcation is supercritical

[subcritical] if ¢ < 0 [¢ > 0] (in the casec = 0 the system is linear and for = p* = 0 the origin is
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neutrally stable and surrounded by an infinity of cyclesY. f-& p* the origin of the state space is stable in
the supercritical case and unstable in the opposite caseJddobian of the normal form, evaluated at the

origin, is

and its two eigenvalues; » = p £ iw cross the imaginary axis of the complex plane wpea 0. This is
the property commonly used to detect Hopf bifurcations tosd-order systems. In fact, denoting bp)
an equilibrium of the system, the Jacobian evaluateg| i is

o oh
6901 6952
af o
8.%'1 8.%'2

z=Z(p)

and such a matrix has a pair of nontrivial and purely imagimégenvalues if and only if

tracgJ) = % % =0,
Tlla=zp) 972 la=z(p)
0f P! of1 P!
det(J) = — —= - = —= > 0.
= o v=2(p) OT2lomz(p)  0%2lumz(p) OT1 lumzp)

In practice, one annihilates the trace of the Jacobian ateduat the equilibrium and finds in this way the
parameter values that are candidate Hopf bifurcationsn,Tthe test on the positivity of the determinantiof

is used to select the true Hopf bifurcations among the caeld Under suitable nondegeneracy conditions,
the emerging cycle is unique and its frequencyis= +/det.J), because,/det.J) = A1)z, while its
amplitude increases ag—c(p — p*).

Determining if a Hopf bifurcation is supercritical or subtical is not easy. One can try to find out if the
equilibrium is stable or unstable but this is quite difficsilice linearization is unreliable at a bifurcation.
Alternatively (but equivalently), one can determine thgnsof the Lyapunov coefficient by following a
procedure that is often quite cumbersome [see, e.g., Ghekeer & Holmes, 1997, Kuznetsov, 2004] and

is therefore not reported here.
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Figure 14: Tangent bifurcation of limit cycles: two cyclgsand~, collide forp = p* and then disappear.

Tangent Bifurcation of Limit Cycles

Other local bifurcations in second-order systems invoiwvetIcycles and are somehow similar to transcrit-
ical, saddle-node, and pitchfork bifurcations of equilibrin fact, the collision of two limit cycles can be
studied as the collision of the two corresponding equiilni the Poincaré map defined on a Poincaré sec-
tion cutting both cycles. Thus, the transcritical, sadubele, and pitchfork bifurcations of such equilibria
correspond to analogous bifurcations of the colliding tiayicles.

The most common case is the saddle-node bifurcation of tiptiies, more often called fold or tangent
bifurcation of limit cycles, where two cycles collide fpr= p* and then disappear, as shown in Figure 14.
On the Poincaré sectioR the bifurcation is revealed by the collision of two equiitbof the Poincaré
map, S unstable andV stable, which then disappear. In terms of eigenvalue degeyehe eigenvalue of
the linearized Poincaré map evaluatedsdtV] is larger [smaller] thari, so that when the two equilibria
coincide, the eigenvalue of the unique linearized Pomoaap must be equal o

Varying the parameter in the opposite direction, this lifttion explains the sudden birth of a pair of
cycles, one of which is stable. While in the case of the Hofefrbation the emerging cycle is degenerate (it

has zero amplitude), in this case the emerging cycles ardaganerate.

Flip (Period-doubling) Bifurcation

The flip bifurcation is the collision of two particular limitycles, one tracing twice the other and therefore

having double period, in a three- (or higher-) dimensiotatiesspace. In the supercritical [subcritical] case,
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Figure 15: Flip bifurcation: (A) stable limit cycle of peddl’; (B) unstable limit cycle of period” and
stable limit cycle of perio@T'.

it corresponds to a bifurcation of a stable [unstable] licyitle of periodI” into a stable [unstable] limit cycle
of period2T" and an unstable [stable] limit cycle of peri@d as sketched in Figure 15 (for the supercritical
case) just before and after the bifurcation.

Physically speaking, the stable limit cycle becomes orilyhdly different, but the key feature is that
the period of the limit cycle doubles through the bifurcatidn other words, if before the bifurcation the
graph of one of the state variables, say has a single peak in each peri@y after the bifurcation the
graph has two slightly different peaks in each perddd On a Poincaré section, looking only at second
return points, the flip bifurcation resembles the pitchfbifiarcation, where two stable equilibria, andz”
(corresponding to the two intersections of the pefid@deycle with the Poincaré section), collides with a
third unstable equilibriun (the intersection of the periodi-cycle) and disappear, whilebecomes stable.

Mathematically speaking, the flip bifurcation is charaieed by a multiplier of the perio@- cycle equal
to —1. Infact, when the cycle is unstable, the divergence frosen on a Poincaré section, is characterized
by (first) return points which tend to alternate between fgoihandz”. This is due to a negative multiplier
< —1. Just after the bifurcation (from right to left in Figure 18)e cycle is stable but the multiplier is still

negative, between 1 ando, i.e., the multiplier is equal te-1 at the bifurcation.
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Figure 16: Neimark-Sacker bifurcation: (A) stable limitcty; (B) unstable limit cycle and small stable
torus.

Neimark-Sacker (Torus) Bifurcation

This bifurcation, when supercritical, explains how a stdlvhit cycle can become a stable torus, by slightly
varying a parameter. Figure 16 clearly represents thisdation and shows that it can be interpreted (from
right to left) as the collision of a stable vanishing torughnan unstable limit cycle inside the torus. On
a Poincaré section, one would see a stable equilibriurer§attion of the cycle of Figure 16A with the
Poincaré section) bifurcating into an unstable equilibriand a small regular closed curve (the intersection
of the torus of Figure 16B with the Poincaré section). In asse on the Poincaré section, one would
observe invariant sets with the same geometry observedeicdbe of the supercritical Hopf bifurcation
(see Figure 13A). For this reason, the Neimark-Sacker ¢afion is sometimes confused with the Hopf
bifurcation. Similarly, the subcritical Neimark-Sackeiuocation resembles the subcritical Hopf bifurcation
(see Figure 13B).

In terms of cycle multipliers, the Neimark-Sacker bifuroatcorresponds to a pair of complex conjugate
multipliers crossing the unit circle in the complex plane.h&M the cycle is stable, nearby trajectories
converge to the cycle by spiraling around it, while, whentablke, trajectories diverge from the cycle and
spiral toward the torus.

In a two-parameter space, the Neimark-Sacker bifurcatiovecseparates the region in which the system

has periodic regimes from that in which the asymptotic regimnquasi-periodic. However, as shown in
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Figure 17: Neimark-Sacker bifurcation curve and Arnoldisgues emanating from it.

Figure 17, in the region where the attractor is a torus, thezevery narrow subregions, each delimited by
two curves merging on the Neimark-Sacker curve. In thesgegigns, called\rnold’s tonguesthe attractor

is a cycle on torus, and the two curves delimiting each toragag¢angent bifurcations of limit cycles. The
points on the Neimark-Sacker curve from which the Arnoldisgues emanate are therefore codimension-
2 bifurcation points. Although the Arnold’s tongues are iitBty many, but countable (generically, there
is a tongue for each possible; : ;) pair characterizing a cycle on torus), only a few of them can b
numerically or experimentally detected, since the others@o thin. Nevertheless, the Arnold’s tongues are

quite important because they explain the subtle and iritiggphenomenon known diequency locking

5 Global Bifurcations

As already said in Section 3, global bifurcations cannot &ected through the analysis of the Jacobians
associated with equilibria or cycles. However, they cahlsti viewed as structural changes of the charac-

teristic frame.

Heteroclinic Bifurcation

In Figure 9 we have already reported the bifurcation cooedmg to the collision of a stable manifold of

a saddle with the unstable manifold of another saddle. Tifisdation is called heteroclinic bifurcation,
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p<p

Figure 18: Homoclinic bifurcation to standard saddle: for= p* the stable manifoldX — of the saddle
S collides with the unstable manifol® * of the same saddle. The bifurcation can also be viewed as the
collision of the cycley with the saddles.

since the trajectory connecting the two saddles is calléerbelinic trajectory (or connection).

Homoclinic Bifurcation

A special but important global bifurcation is the so-callegimoclinic bifurcation characterized by the
presence of a trajectory connecting an equilibrium witelftsalled homoclinic trajectory (or connection).

There are two collisions that give rise to a homoclinic wépey. The first and most common collision
is that between the stable and unstable manifolds of the saddie, as depicted in Figure 18. The second
collision, shown in Figure 19, is that between a node and disathose unstable manifold is connected to
the node. The corresponding bifurcations are caflechoclinic bifurcation to standard saddler simply
homoclinic bifurcation, anthomoclinic bifurcation to saddle-node

Figure 18 shows that the homoclinic bifurcation to standarddle can also be viewed as the collision
of a cycley(p) with a saddleS(p). Whenp approacheg* the cycley(p) gets closer and closer to the saddle
S(p), so that the period’(p) of the cycle becomes longer and longer, since the state «fystem moves
very slowly when it is very close to the saddle. By contragiuFe 19 shows that the homoclinic bifurcation
to saddle-node can be viewed as a saddle-node bifurcatianaycle~y(p), which therefore disappears.
Whenp approacheg* the system “feels” the forthcoming appearance of the twalibga and therefore
the state slows down close to the point where they are goirgppear. Thus, in both caseéB(p) — oo
asp — p* and this property is often used to detect homoclinic biftioces through simulation. Another

property used to detect homaclinic bifurcations to staddaddles through simulation is related to the form
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Figure 19: Homoclinic bifurcation to saddle-node: for= p* the unstable manifolX + of the saddle-node
SN comes back t@N transversally to the stable manifold~. The bifurcation can also be viewed as a
saddle-node bifurcation on the cyele

of the limit cycle which becomes “pinched” close to the bifation, the angle of the pinch being the angle
between the stable and unstable manifolds of the saddle.

Looking at Figures 18 and 19 from the right to the left, we aarognize that the homoclinic bifurcation
explains the birth of a limit cycle. As in the case of Hopf bifations, the emerging limit cycle is degenerate,
but this time the degeneracy is not in the amplitude of thdeclat in its period, which is infinitely long.
The emerging limit cycles are stable in the figures (the geayon in Figure 18 is the basin of attraction),
but reversing the arrows of all trajectories the same figooesd be used to illustrate the cases of unstable
emerging cycles. In other words, homoclinic bifurcatiomsécond-order systems are generically associated
with a cycle emerging from the homoclinic trajectory exigtatp = p* by suitably perturbing the parameter.
It is interesting to note that the stability of the emergipgle can be easily predicted by looking at the sign
of the so-calledaddle quantityr, which is the sum of the two eigenvalues of the Jacobian rassociated
with the saddle, i.e., the trace of the Jacobian (notice dhat eigenvalue is equal to zero in the case of
homoclinic bifurcation to saddle-node). More precisdly; ki 0 the cycle is stable, while & > 0 the cycle
is unstable. As proved by Andronov and Leontovich [see Andveet al, 1973], this result holds under a
series of assumptions that essentially rule out a numbeitiofat cases. A very important and absolutely not
simple extension of Andronov and Leontovich theory is Slilbv theorem [Shil’nikov, 1968] concerning

homoclinic bifurcations in three-dimensional systems.
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6 Catastrophes, Hysteresis, and Cusp

We can now present a simple but comprehensive treatmentasicat problem, that afatastrophic transi-
tionsin dynamical systems. A lot has been said on this topic indeedecades and the so-caledastrophe
theory[Thom, 1972] has often been invoked improperly, thus gdimgya&xpectations that will never be sat-
isfied. Reduced to its minimal terms, the problem of catasiimtransitions is the following: assuming
that a system is functioning in one of its asymptotic reginie# possible that a microscopic variation of
a parameter triggers a transient toward a macroscopiciifreht asymptotic regime? When this happens,
we say that a catastrophic transition occurs.

To be more specific, assume that an instantaneous smalttpaitun fromp to p + Ap occurs at time
t = 0 when the system is on one of its attractors, gHy), or at a pointz(0) very close toA(p) in the
basin of attractionB (A(p)). A first possibility is thatp andp + Ap are not separated by any bifurcation.
This implies that the state portrait of the perturbed system f(z,p + Ap) can be obtained by slightly
deforming the state portrait of the original systém= f(z,p). In particular, ifAp is small, by continuity,
the attractors4(p) and . A(p + Ap), as well as their basins of attractid® (A(p)) and B (A(p + Ap)),
are almost coincident, so that0) € B (A(p + Ap)). This means that after the perturbation a transition
will occur from A(p) (or z(0) close toA(p)) to A(p + Ap). In conclusion, a microscopic variation of a
parameter has generated a microscopic variation in systéavior.

The opposite possibility is thatandp + Ap are separated by a bifurcation. In such a case it can happen
that the small parameter variation triggers a transieimgbrg the system toward a macroscopically different
attractor. When this happens for all initial stat€®) close to.A(p), the bifurcation is calle¢atastrophic
By contrast, if the catastrophic transition is not possitite bifurcation is calleshoncatastrophicwhile in
all other cases the bifurcation is said tou@letermined

We can now revisit all bifurcations we have discussed in thgipus sections. Let us start with Figure 11
and assume thatis small and negative, i.ep, = —e¢, thatz(0) is different from zero but very small, i.e.,
close to the stable equilibrium, and tligp = 2¢ so that, after the perturbation,= €. In case A (transcritical
bifurcation) z(t) — € if 2(0) > 0 andxz(t) — —oo if 2(0) < 0. Thus, this bifurcation is undetermined
because it can, but does not always, give rise to a catagtrsghsition. In a case like this, the noise acting
on the system has a fundamental role since it determinesghe®z(0), which is crucial for the behavior

of the system after the parametric perturbation. We mustedtowever, that in many cases the sign: (@)
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Figure 20: Two systems with hysteresis generated by twolesaddle bifurcations (A), and a saddle-node
and a transcritical bifurcation (B).

is a priori fixed. For example, if the system is positive begatirepresents the density of a population, then
for physical reasons(0) > 0 and the bifurcation is therefore noncatastrophic. Howeaweder the same
conditions, the transcritical bifurcation of Figure 12Acatastrophic. Similarly, we can conclude that the
saddle-node bifurcation of Figure 11B is catastrophic, e as that of Figure 12B, and that the pitchfork
bifurcation can be noncatastrophic (as in Figure 11C) astaiphic (as in Figure 12C).

From Figure 13 we can immediately conclude that the supieairHopf bifurcation is noncatastrophic,
while the subcritical one is catastrophic. This is why the tdopf bifurcations are sometimes called catas-
trophic and noncatastrophic. Finally, Figures 14, 18, éhdHow that tangent and homoclinic bifurcations
are catastrophic.

When a small parametric variation triggers a catastrophiasition from an attractad’ to an attractor
A" it is interesting to determine if it is possible to drive thestem back to the attractod’ by suitably
varying the parameter. When this is possible, the catdstrag calledreversible The most simple case
of reversible catastrophes is thgsteresistwo examples of which (concerning first-order systems) are
shown in Figure 20. In case A the system has two saddle-nddec#iions, while in case B there is a
transcritical bifurcation ap} and a saddle-node bifurcationzgt All bifurcations are catastrophic (because
the transitionsA — B andC' — D are macroscopic) and jf is varied back and forth between,;, < p}
andpmax > p3 through a sequence of small steps with long time intervale/den successive steps, the

state of the system follows closely the cydde—~ B — C' — D indicated in the figure and calldtsteretic
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Figure 21: Equilibria and limit cycles (characteristicrfra) of the Rosenzweig-MacArthur tritrophic food
chain model with constant superpredator populagion

cycle(or, briefly, hysteresis). The catastrophes are theretrersible, but after a transition fropt' to A”

it is necessary to pass through a second catastrophe to axkeadthe attractoid’. This simple type of
hysteresis explains many phenomena in physics, chemistdyelectromechanics, but also in biology and
social sciences. For example, the hysteresis of Figure 2&@8used by Noy-Meir [1975] to explain the

possible collapse (saddle-node bifurcation) of an exgdbjtopulation described by the equation

) <1 CE) ar
t=rx(l—=)—
K 1—|—a7’:r:p7

wherez is resource density (e.g., density of grass) aiglthe number of exploiters (e.g., number of cows).
If pisincreased step by step (e.g., by adding one extra cow geary the resource declines smoothly until
it collapses to zero when a threshgltlis passed. To regenerate the resource, one is obliged twaligdi
reduce the number of exploitersgo< pj.

Hysteresis can be more complex than in Figure 20 not onlyusecthe attractors involved in the hys-
teretic cycle can be more than two, but also because somemf ¢hn be cycles. To show the latter pos-
sibility, we consider the so-called Rosenzweig-MacArtmwdel [Rosenzweig & MacArthur, 1963], that
describes the dynamics of a tritrophic food chai: (prey; zo: predator;p: superpredator) in which, how-
ever, the top population is (or is kept) constant. Withoutgng into the details of the analysis of this
second-order model [see Kuznetsahal,, 1995], we show in Figure 21 the equilibria and the cycledhef t

system in the control spa¢g, x1, z2) for a specified value of all other parameters. The figure paint five
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Figure 22: Periodic variation of a predator population icetili by a periodic variation of the superpredator.

bifurcations: a transcriticall{R), two homoclinic ¢, andhs), a supercritical HopfK ), and a saddle-node
(SN). Two of these bifurcations, namely the second homochsniand the saddle-nod&V, are catastrophic
and irreversible. In fact, catastrophic transitions frbgnand SN bring the system toward the trivial equi-
librium (K, 0) (extinction of the predator population) and from this stais not possible to return té,

or SN by varyingp step by step. By contrast, the two other catastrophic kations, namely the first ho-
moclinic h; and the transcriticdl'R, are reversible and identify a hysteretic cycle obtaineddying back
and forth the parameterin an interval slightly larger thafprr, pr,]. On one extreme of the hysteresis we
have a catastrophic transition from the equilibrigfd, 0) to a prey-predator limit cycle. Then, increasing
p, the period of the limit cycle increases (and tends to infiagp — py,), and on the other extreme of the
hysteresis we have a catastrophic transition from a homiodjycle (in practice a cycle of very long period)
to the equilibrium(K, 0). Thus, ifp is varied smoothly, slowly, and periodically from just belpx to just
abovepy,,, one can expect that the predator population varies peatidiin time, as shown in Figure 22.
In conclusion, the predator population remains very scaoca long time and then suddenly regenerates,
giving rise to high-frequency prey-predator oscillatiomich, however, slow down before a crash of the
predator population occurs. Of course, tritrophic foodimtao not always have such wild dynamics. In
fact, many food chains are characterized by a unique attraod therefore cannot experience catastrophic
transitions and hysteresis.

An interesting variant of the hysteresis it the so-cattedp described by the normal form

& = p1+ pax — 37,
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Figure 23: Equilibria of the cusp normal form. The unstalgjeilbria are on the gray part of the surface,
which corresponds to the gray cusp region in the parameteesp

which is still a first-order system, but with two parametefor p; = 0 the equation degenerates into
the pitchfork normal form, while fop, > 0 the equation points out a hysteresis with respegt;tavith
two saddle-nodes. The graph of the equilibEia, p2) is reported in Figure 23, which shows that for the
parametergp;, p2) belonging to the cusp region in parameter space, the systsnthhee equilibria, two
stable and one unstable (in the middle). In contrast witthsteresis shown in Figure 20, this time after a
catastrophic transition from an attractdf to an attractord” (transitionB — C'in the figure), one can find
the way to come back t@’ without suffering a second catastrophic transition (gath- D — A — Bin

the figure).

7 Routesto Chaos

The bifurcations we have seen in the previous sections déatlie most common transitions from station-
ary to cyclic regimes and from cyclic to quasi-periodic rags. Only one of them, namely the homaoclinic
bifurcation in third-order systems, can mark, under silgtabnditions specified by Shil’nikov theorem, the
transition from a cyclic regime to a chaotic one. In an algstsanse, the Shil'nikov bifurcation is respon-

sible of one of the most known “routes to chaos”, calledis explosioncharacterized by the collision in
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Figure 24: Torus explosion route to chaos viewed on a Pdinsaction: (A) regular torus; (B) pinched
torus; (C) strange attractor.
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Figure 25: The Feigenbaum route to chaos:fef p; the attractor is a cycle; far, < p < po, the attractor
is a longer and longer cycle; fgr> p., the attractor is a strange attractor.

a three-dimensional state space of a saddle cycle with &dtains. Observed on a Poincaré section, the
bifurcation is revealed by a gradual change in shape of thesiection of the torus with the Poincaré section,
shape which becomes more and more pinched while approatttérapllision with the saddle cycle. After
the collision, the torus breaks into a complex fractal seictyrhowever, retains the geometry of a pinched
closed curve, as shown in Figure 24.

Another, and perhaps most known, route to chaos ig-&igenbaum cascagdevhich is an infinite se-
quence{p; } of flip bifurcations where the;'s accumulate at a critical valye,, after which the attractor is
a genuine strange attractor. Very often, this route to ciedspicted by plotting the local peaks of a state
variable, sayr{, as a function of a parametgr as shown in Figure 25. Physically speaking, the attractor

remains a cycle untib = p.., but the period of the cycle doubles at each bifurcaggrnwhile unstable,
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actually saddle, cycles of longer and longer periods actain state space. This route to chaos points
out a general property of strange attractors, namely thid¢Hatthey are basically composed by an aperiodic
trajectory visiting a bounded region of the state spacealgritled of saddle cycles, repelling along some

directions (stretching) and attracting along others {faji

8 Numerical Methods and Software Packages

All effective software packages for numerical bifurcatianalysis are based aontinuation(see, e.g.,
Keller, 1977, Allgower & Georg, 1990, Doedet al,, 1991a,b, Beyret al,, 2002, Kuznetsov, 2004, Chap-

ter 10), which is a general method for producingRt a curve defined byg — 1) equations

Fl(wl,wg,... ,wq) = 0,
Fg(wl,wg,... ,wq) = 0,
qul(’wl,wz,... ,wq) = 0,
or, in compact form,
Fw)=0, weR? F:RI—RIL (13)

Given a pointw(©®) that is approximately on the curve, i.€(w(®)) ~ 0, the curve is produced by generating
a sequence of points(?, i = 1,2, .. ., that are approximately on the curve (i.E{w")) ~ 0), as shown in
Figure 26A. Theith iteration step, fromuv(® to w1 is a so-called prediction-correction procedure with
adaptive step-size and is illustrated in Figure 26B. Thélipten hv(®) is taken along the direction tangent
to the curve atw'®, wherev® is computed as the vector of lengttsuch thadF/ow|,,_, v = 0, the
absolute value oh, called the step-size, is the prediction length, and the efgh controls the direction
of the continuation. Then, suitable corrections try to ¢rihe predicted point back to the curve with the
desired accuracy, thus determining Y. If they fail, the step-size is reduced and the correctioesried
again until they succeed or the step-size goes below a mimithteshold at which the continuation halts
with failure. By contrast, if corrections succeed at thet fitigl, the step-size is typically increased.

Given a second-order systein= f(x,p), wherep is a single parameter, assume that an equilibrium
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Figure 26: Generation of the curve defined by (13) throughicoation.

€2

(), p©)

—_—

T

Figure 27: The curve(p) produced fromz(?), p(®)) through continuation in the three-dimensional control
space(p, x1, x2) and three bifurcation points, detected through the aratibit of the bifurcation functions
¢’ and¢”.

70 is known forp = p(©. Thus, starting from pointz(®), p©) in R3, the equilibriaz(p) can be easily

produced, as shown in Figure 27, through continuation bgidening (13) with

F(w) = f(z,p), w=

Moreover, at each step of the continuation, the JacoBiaiip), p) and its eigenvalues; (p) and 2 (p) are
numerically estimated and a few indicata¥&z(p), p), calledbifurcation functionsare computed. These

indicators annihilate at specific bifurcations, as showRigure 27. For exampley = det.J) is a bifur-
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cation function of transcritical, saddle-node, and pitckfbifurcations, since at these bifurcations one of
the eigenvalues of the Jacobian matrix is zero an@dJdet A\ \o. Similarly, ¢” = tracd.J) is a Hopf
bifurcation function (see Section 4). Once a parameterevahnihilating a bifurcation function has been
found, a few simple tests are performed to check if the béftion is really present or to detect which is
the true bifurcation within a set of potential ones. For eglanas clearly pointed out by Figure 11B, at a
saddle-node bifurcation thecomponent of the vector tangent to the cum(g) annihilates. By contrast,
at transcritical and pitchfork bifurcations (see Figuré# hnd C) two equilibrium curves, one of which is
Z(p), transversally cross each other, so that there are twonérgetors ap = p*, one with a vanishing-
component in the pitchfork case. Analogouslyff(z(p*), p*) = 0 one must first check that (z(p*), p*)
is positive before concluding that= p* is a Hopf bifurcation (see Section 4).

Once a particular bifurcation has been detected throughrthéhilation of its bifurcation functiowp, it

can be continued by activating a second parameter. Fo(1dkjs written with

Flw) = f(z,p) .

¢(x,p) p
wherew is now four dimensional sincg is a vector of two parameters. If the curve obtained through
continuation inR* is projected on the two-dimensional parameter space, thieedebifurcation curve is
obtained.

In the case of local bifurcations of limit cycles and glob#ilitzations, the functions are quite complex
and their evaluation requires the solution of the ODEs f(z,p). Actually, a rigorous treatment of the
problem brings one naturally to the formulation of two-bdary-value problems [Doedeit al., 1991b,
Beynet al, 2002]. For example, as shown in Figure 28, homoclinic b#tions can be detected by the
functiong = 2™ — 2~, wherez™ andz~ are the intersections of the unstable and stable manifdlteeo
saddle with an arbitrary axis passing through the saddle. Thysis zero if and only if the saddle has a
homoclinic connection.

Many are the available software packages for bifurcatioalyasis, but the most interesting ones are
AUTO [Doedel, 1981, Doedadt al., 1997, 2007], LOCBIF [Khibniket al., 1993], CONTENT [Kuznetsov
& Levitin, 1997], and MATCONT [Dhoogeet al,, 2002]. They can all be used to study systems with more

than two state variables and they can detect and continbéwaitations mentioned in this chapter. AUTO is
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Figure 28: The bifurcation function = 2™ — 2~ is zero when there is a homoclinic bifurcation, i.e., when
the stable and unstable manifolds and X of the saddle collide.

the most popular software for bifurcation analysis and iti@aarly suited for the analysis of global bifurca-
tions. LOCBIF is more effective than AUTO for local bifur@ts, since it can also continue codimension-
bifurcations. However, LOCBIF runs only on MS-DOS and hasdfore been reimplemented and improved
in CONTENT, which runs on several software platforms. MATKD continuously updated, is aimed at

encapsulating the best features of all previously menticudtware packages in a MATLAB environment.
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