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DETERMINISTIC CHAOS 

Time series

Power spectra

State-space portraits

Poincaré sections

Self-similarity
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TIME SERIES

They are obtained by recording the time history of one (or few) of the system variables. 

))(()(

))(()(

txgty

txftx

In general, the output is a function of the state variables (often is simply one of them). 

In chaotic regime, )(ty  has a non-periodic and apparently random behavior.
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Example (continuous-time):

)sin)((
1

212

21

tUhxxF
m

x

xx

The measured variable is the position: )()( 1 txty .
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Example (discrete-time): “logistic map”: 

)(1)()1( txtxrtx

At 9.3r  the behavior of )(tx  is non-periodic.
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POWER SPECTRA

By means of the Fourier transform, the signal )(ty  can be written as 

0
)(cos)(

1
)( dtYty    , 0)(Y

namely as the sum of an infinite number (uncountable, in general) of sinusoidal 
functions: )(Y  is the amplitude of the sinusoid with frequency .

The function )(Y  is called amplitude spectrum. The function 2)()( YP  is called 
power spectrum.
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If )(ty  is periodic, with period /2T , then: 

1
)(cos)()0()(

k
kkkYYty

The spectrum is made by “impulses” (= nonzero only when  is a multiple of ).
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A chaotic signal has typically a “broadband” spectrum. 

Example: Taylor-Couette experiment: 

)(ty  is the fluid velocity in a given point. 

          periodic                   quasi-periodic        chaotic 
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Example: Duffing system:

tqxxxx

xx

sin168.05.05.0 2
3
112

21
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Example: Lorenz system: 

xybzz

xzyrxy

yxx

           time series )(tx          power spectrum 
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STATE-SPACE PORTRAITS

In chaotic regime, the trajectories of the system 

remain bounded

never return to a state already visited (=non periodicity), but pass arbitrarily close to 
it  

display complex geometries

Example: Lorenz system 

xybzz

xzyrxy

yxx
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Example: Rössler system 

zcxbz

ayxy

zyx

)(

Example: a trajectory “reconstructed” 
from a time series obtained by an 
experiment (a chemical reaction) 



C. Piccardi – Politecnico di Milano – ver. 18/09/2014 13/46 

Example: Henon map (discrete-time system)

)()1(

)(1)()1( 2

tbxty

taxtytx

In the state space ),( yx , the trajectory is the sequence of points )(),( tytx , ,1,0t .
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POINCARE’ SECTIONS

In a continuous-time n -order system )(xfx ,
the Poincaré section is a )1(n -dimensional
surface P, which is transversal (at a point z ) to 
a limit cycle .

The trajectory started at )0(z P will intersect P
at points ),2(),1( zz .

Thus )(xfx  defines (close to ) a discrete-
time system (Poincaré map)

))(()1( tzPtz

where 1nRz , )(zPz .
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The Poincaré map can also be defined for a continuos-time system ))(,()( txtftx  which 
is periodic with respect to t  (with period 0T ):

),(),( xTtfxtf , for all xt,

We need to consider the 
period-T map (or
“stroboscopic map”):

))(()1( kzPkz

where )()( kTxkz ,
,2,1,0k .

On the Poincaré section, we observe the trajectory of the discrete-time system

))(()1( kzPkz
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In chaotic regime, on the Poincaré section we observe a bounded set with complex
geometry.

Example: potential wells with 
periodic forcing. 

Example: laser: experimentally 
derived  Poincaré section. 
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SELF-SIMILARITY

In chaotic regime, the system trajectories have “self-similar” geometry: the same 
structure is reproduced at arbitrarily small scale. 

Example: “zooming” into a 
trajectory of the Henon map. 

The “6-band” structure is 
repeated infinitely many 
times. 



T I
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LIAPUNOV EXPONENTS (LEs) 

Discrete-time systems (1- and n -dimensional)

Continuous-time systems 
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1-DIMENSIONAL MAPS

Consider

the discrete-time system ))(()1( txftx , with 1n

a “nominal” trajectory ),2(),1(),0( xxx

a “perturbed” trajectory ),2(~),1(~),0(~ xxx  started from a state )0()0()0(~ xxx
“close” to )0(x

Since

)0()0(~)0(

))0(())0(~()1()1(~

xxxf

xfxfxx

it follows that ))0((xf  is the expansion/contraction rate of the initial difference )0(x
between the two trajectories (if infinitesimal).
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After t  time steps 

)0()0(~)0()2()1(

)0()0(~))0(())0(~()()(~

)0(

xxxftxftxf

xx
x
f

xfxftxtx
x

t
tt

Thus, asymptotically the average separation rate (per step) of nearby trajectories is   

t

t
x xftxftxfh /1

)0( )0()2()1(lim

If )0(x  is infinitesimal, for t  we have )0()()( )0( xhtx t
x  or, equivalently 

)0()( )0( xetx
tLx

)0(xL  is the Liapunov exponent (LE) of the trajectory started at )0(x .
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To summarize, the LE is given by 

t

xftxftxf
L

t
x

)0(ln)2(ln)1(ln
lim)0(

If 0)0(xL  : along the trajectory  started at )0(x , nearby trajectories diverge (on 

the average) from .

If 0)0(xL : along the trajectory  started at )0(x , nearby trajectories converge (on 

the average) to .
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Example: logistic map, )(1)()1( txtxrtx

At 5.2r , the equilibrium rrx /)1(  is 
asymptotically stable, because the Jacobian is 

5.022)(' rxrrxf

Any trajectory started at )1,0()0(x  tends to x .
Then

05.0lnln)(ln
1

lim
1

0)0( xfkxf
t

L
t

kt
x

Remark: 1)(xf  (x  asymptotically stable) 0)0(xL
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Example: tent map 

2/1)()(12

2/1)()(2
)1(

txiftx

txiftx
tx

The trajectory neither tends to an 
equilibrium nor to a cycle, but remains non
periodic forever. 

If we exclude all trajectories passing 
through  2/1x  (i.e. a zero-measure set 
of initial states), any )1,0()0(x  implies 

02lnln)(ln
1

lim
1

0)0( xfkxf
t

L
t

kt
x
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When the trajectory is non-periodic, typically the LE can only be computed numerically.

The trajectory ),2(),1(),0( xxx  is recursively obtained at, at the same time, we 
compute the estimate 

1

0)0(, )(ln
1ˆ t

kxt kxf
t

L

until it converges as t  grows.

Example:

The estimate of the Liapunov exponent converges, 
as t  grows, to a positive value. 



C. Piccardi – Politecnico di Milano – ver. 18/09/2014 25/46 

n-DIMENSIONAL MAPS

Consider now a discrete-time system ))(()1( txftx , with any order 1n . The LEs are 
a set of n real numbers, conventionally in decreasing order: 

)0(,)0(,2)0(,1 xnxx LLL

The quantity )exp( )0(,xiL  is the growing rate of the distance from the nominal trajectory 

(=started at )0(x ) along n orthogonal directions.

)exp( )0(,1 xL : “maximum grow” direction (#1)

)exp( )0(,2 xL :  “maximum grow” direction among 

those orthogonal to #1 (#2) 

)exp( )0(,3 xL : “maximum grow” direction among 

those orthogonal to #1 and #2 (#3) 

…and so on up to n .



C. Piccardi – Politecnico di Milano – ver. 18/09/2014 26/46 

Remark: if we take a generic )0(x (=not orthogonal to the maximum grow direction),
asymptotically (t ) we have 

)0()( )0(,1 xetx
tL x

because all the other terms (i.e. the other LEs) become negligible. 

Therefore, the first (=maximum) LE specifies whether, on the average, nearby 
trajectories diverge ( 0)0(,1 xL ) or converge ( 0)0(,1 xL ). 
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CONTINUOUS-TIME SYSTEMS

Consider now 

the continuous-time system ))(()( txftx , with any order 1n

an initial state )0(x

A period-T map can be defined, which maps each state )0(x  into the state )(Tx , i.e. 

))(())1(( kTxFTkx T ,     with 0T  arbitrary 

It is a discrete-time system, whose LEs are nLLL
~

,,
~

,
~

21 .

Then the LEs of ))(()( txftx  are given by TLL ii /~
, ni ,,2,1 .
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Example: Chua circuit 

It is a third-order electric circuit ( 3n ) with a nonlinear component:

If the nonlinear component has a cubic voltage-current characteristic, the state equations 
become:

yz

zyxy

cxaxyx )( 3
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For suitable parameter values, the system has a nonperiodic trajectory:

     time series of zyx ,, state-space trajectory 

The LEs are computed by an iterative algorithm. 

01L , 02L , 03L
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CHAOTIC ATTRACTORS 

Attractors 

Classification of attractors: equilibria, limit cycles, tori, chaotic attractors 

LEs of attractors 
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ATTRACTORS

Consider a continuous- or discrete-time system 

)(xfx      or ))(()1( txftx

and denote by ),()( 0xttx , 0t , the orbit with initial state 0x .

Definition: A closed and bounded set nRA  is an attractor if 

 i) it is invariant
(i.e. AAt ),(  for all 0t )
(i.e. starting in A the trajectory remains in A forever) 

 ii) it is attractive
(i.e. there exists an open and invariant set AU  such that AUt ),(

for t )
(i.e. starting in a neighborhood of A  the trajectory will tend to A)

 iii) it is minimal
(i.e. there is no proper subset of A satisfying conditions i) e ii)) 
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Condition iii) can be replaced by alternative requirements (largely equivalent) that put in 
evidence important properties of attractors:  

A is indecomposable (or topologically transitive):

For each pair of sets AXX ,  there exists 0t  such that 0),( XXt

A contains a dense orbit:

There exists Ax0  such that the set }0|),({ 0 txt  is dense in A, i.e. 
Starting form a generic point of A , the trajectory will pass (in finite time) arbitrarily 
close to any point of A
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The basin of attraction )(AB  is the set AxtxAB ),(|)( , i.e. the set of initial
states starting from which the trajectory tends to A.

Example: two state-space portraits with multiple attractors
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By definition, the LEs are related to a trajectory (=an initial state )0(x ):

)0(,xii LL      , ni ,,2,1

In fact, given an attractor A, it can be proved that all trajectories starting from 
)()0( ABx  (i.e. within the basin of attraction) have the same LEs.

Thus the LEs give a characterization of the 
attractor A .
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EQUILIBRIA

Since the equilibrium is an attractor, 
the distance between any two nearby 
trajectories decreases

 the LEs are negative

nLLL 210

Remark: the same property holds for a cycle of a discrete-time system ))(()1( txftx ,
because:

period-T cycle of the map f  = equilibrium of the map Tf
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LIMIT CYCLES

Consider a limit cycle A of the time-continuous 
system )(xfx .

Any two nearby trajectories started within )(AB
tend to A, but their distance does not vanishes.

Indeed, the component of )()( txtx  along the 
cycle remains unchanged (on the average): 

 a LE is zero: 01L

Since the limit cycle is an attractor, the remaining LEs are negative:

nLLL 210
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Example: Chua circuit 

For suitable parameter values, the system 
has a periodic trajectory. 

The LEs are computed by an iterative algorithm. 

3077.2

1469.0

00008.0

3

2

1

L

L

L
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TORI

Consider a torus A (generated by  2 
frequencies) of the continuous-time
system )(xfx .

As well as for a limit cycle, any two 
nearby trajectories started within 

)(AB  tend to A, but their distance 
does not vanishes.

However, now there are 2 components of )()( txtx  that remain unchanged (on the 
average), so that 

021 LL

Since the torus is an attractor, the remaining LEs are negative:

nLLLLL 43210

More generally, a k-torus (= k  frequencies) has k  LEs equal to zero. 
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CHAOS

Definition: A closed and bounded set nRA  is a chaotic attractor if 

 i) it is an attractor
 ii) 01L

Therefore, in a chaotic attractor any two 
nearby trajectories exponentially diverge 
(“stretching”).

However, if )0(x  is finite (not infinitesimal), the 
grow of )(tx  cannot continue indefinitely, 
because the attractor A is bounded.

The system nonlinearities will eventually take 
the two trajectories close again (“folding”).
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The “stretching” ( 01L ) gives rise to sensitive dependence on the initial conditions:

arbitrarily close initial states ( 0)0(x ) generate trajectories that become distant in 

finite time. 

In other words, an arbitrarily small uncertainty on the initial state )0(x  makes )(tx
unpredictable in the medium/long term (the “butterfly effect”). 

Example: Chua circuit 

Two trajectories with initial distance 
310)0(x separate after sometime, 

giving rise to different behaviors. 
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Example: Lorenz system  

The evolution of a small ball of 
104 initial states.

After sometime, the trajectories 
are practically uncorrelated.



C. Piccardi – Politecnico di Milano – ver. 18/09/2014 42/46 

Generically, given a chaotic attractor A:

0k  LEs are positive because of the stretching (if 1k  there are more than one 
directions of divergence: hyperchaos)

021 kLLL

for systems )(xfx , 1 LE is zero: the component of )0(x  along the trajectory 
remains unchanged (on the average) 

01kL

the remaining LEs are negative, because A is an attractor

nkk LLL 320      ,      for )(xfx

nkk LLL 210      ,      for ))(()1( txftx
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Example: CO2 laser 

A simplified model: 

)sin(121 ctbuxax
gfexaxexdxx )exp(2 12322

233 lxhxx

where )exp( 1x  is proportional to the light intensity.

For suitable parameter values, the system has a nonperiodic behavior:

))(exp( 1 tx
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The laser model is a periodic system ),( xtfx , with period cT /2 .

It is equivalent to the period-T map:

)()1( kTxFTkx      , 3Rx

The LEs are computed by an iterative 
algorithm. 

010675.73

010948.4

010361.0

5
3

5
2

5
1

L

L

L

01L  denotes that the behavior is chaotic.
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Remark: in most cases, computing the first (maximum) LE 1L  allows one to classify the 
type of attractor. 

)(xfx ))(()1( txftx
Equilibria 01L 01L

Limit cycles 01L  ( 02L ) 01L
Tori 01L  ( 02L ) 01L

Chaos 01L 01L

The computation of the first LE only can be done with efficient and numerically stable 
algorithms.
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EXERCISES

1. (Numerical experiments on Lorenz system) 
For each of the values of r  given below, use a computer to explore the dynamics of the Lorenz system, assuming 10
and 3/8b . In each case, plot )(tx , )(ty , and x  vs. z . You should investigate the consequences of choosing different 
initial conditions and lengths of integration. Also, in some cases you may want to ignore the transient behavior, and 
plot only the sustained long-term behavior. 

10r ; 22r  (transient chaos); 5.24r  (chaos and stable point co-exist); 100r  (surprise); 52.126r ; 400r

2. (Liapunov exponent of the logistic map) 
For each of the values of r  given below, compute all the equilibria of the logistic map ))(1)(()1( txtrxtx  and study 
their stability. Then, use a computer to evaluate the Liapunov exponent, also investigating the consequences of 
choosing different initial conditions and lengths of integration. 

5.0r  (trivial equilibrium); 2r  (equilibrium); 2.3r  (period-2 cycle); 8.3r  (chaos); 83.3r  (period-3 cycle) 

3. (Ueda attractor) 
Consider the system tBxxkx cos3 , with 1.0k  and 12B . Write the system equations in the usual form )(zfz  by 
defining a suitable two-dimensional vector z . Show numerically that the system has a chaotic attractor, and plot its 
Poincaré section. 
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FRACTAL GEOMETRY 

Dimension of a set 

Elementary fractal sets 

Fractal dimensions 

Fractal geometry and dynamical systems 
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Typical features of a fractal set include 

complex structure at arbitrarily small scale

self-similarity

non integer dimension

       Example: Julia sets 

Many natural objects display 
such features: 

coasts,
cabbages,
corals,
trees,
hydrological nets,
nervous system, 
bronchial system, 
Saturn rings, 
…
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DIMENSION OF A SET

Consider “simple” sets in nR : a point, a smooth line, a smooth surface,…. 

Intuitively, we can state that the dimension is the number of coordinates needed to 
identify each point of the set. 

“Simple” sets have integer dimension, as well as the union of a countable number of 
them.
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ELEMENTARY FRACTAL SETS

The (middle-third) Cantor set

Starting from ]1,0[ , at each step the “middle-third” of each segment is erased.

The Cantor set is the set SC  which is obtained after infinite steps.
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C  is self-similar: it contains copies of itself at any scale (e.g.: the part of C  in 
]3/1,0[  is equal to the entire C , scaled by 3).

C  has zero length. Indeed, the length of the set 1kS  is kk ll )3/2(1  and thus 

tends to 0 as k . Therefore the dimension of C  is 1 (“it is less than a line…”). 

C  is an infinite set (=infinitely many points) and it is uncountable (“it is more than a 
point…”).

We will learn that the dimension of C  is non integer, between 0 and 1. 
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Generally speaking, we define a topological Cantor set as a set S  such that: 

S  is totally disconnected: S  does not contains any connected subset, i.e. each point 
is “separated” from each other point. 

S does not contains isolated points: in any arbitrarily small neighborhood of each 
point of S  there are other points of S .

The “middle-third” Cantor set has the two above properties. 

Typically, the chaotic attractors of discrete-time systems (and of Poincaré maps of 
continuous-time systems) are topological Cantor sets.
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The von Koch curve

Starting from a segment 0S , at each step the “middle-third” of each sub-segment is 
erased and replaced by the other two sides of an equilateral triangle.

The von Koch curve is the set SK  which is obtained after infinite steps.
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Remark:

The von Koch curve K  has infinite length.

Indeed, the length of 1kS  is kk ll )3/4(1  and thus tends to  as k . Therefore 
the dimension of K  is 1 (“it is more than a line…”). 

However, since K  is a union of segments, its area is zero (“it is less than a surface…”).  

We will learn that the dimension of K  is non integer, between 1 and 2. 
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FRACTAL DIMENSIONS

Several criteria have been proposed to quantify the dimension of fractal sets (“fractal 
dimension”). We analyze three of them: 

“Box-counting” dimension Bd

Correlation dimension Cd

Liapunov dimension Ld



C. Piccardi – Politecnico di Milano – ver. 18/09/2014 12/30 

“Box-counting” dimension

Consider a set nRS  contained in an n -dimensional “cube” H , and partition H  in  
“boxes” whose side is .

The total number of boxes )(T  is proportional to n)/1( .

Now denote by )(N  the number of boxes containing 
at least one point of S .

S  has dimension Bd  if, for small , )(N  obeys the power law 

Bd

N
1

)(       or equivalently     )/1log(log)(log BdN

Letting 0, we have the definition of “box-counting” dimension

)/1log(

)(log
lim

0

N
dB
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Example: “simple” sets 

1n

A segment with length L is covered by 
/)( LN  boxes.

Thus 1Bd .

2n

A surface with area A is covered, for 

0, by 2/)( AN  boxes.

Thus 2Bd .
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Example: “middle-third” Cantor set 

The set kS  is covered by kN 2)(  intervals each of length k)3/1( .

63093.0
3log

2log

3log

2log
lim

3log

2log
lim

)/1log(

)(log
lim

00 k

kN
d

kk

k

B

The dimension of the Cantor set C  is non-integer (= fractal). 
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Example: von Koch curve 

The set kS  is covered by kN 4)(  intervals each of length k)3/1( .

2618.1
3log
4log

3log
4log

lim
3log

4log
lim

)/1log(
)(log

lim
00 k

kN
d

kk

k

B

The dimension of the von Koch 
curve is non integer (= fractal). 
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In most cases, the dimension has to be computed numerically.

Example: the attractor of the Henon map 

)()1()(1)()1( 2 tbxtytaxtytx

)(N  is computed for 
decreasing values of ,
and plotted with respect to 

)/1( .

4/1 8/1 16/1

Since )/1log(log)(log BdN , the slope (on log 

scales) is the estimate of Bd .

In this case 27.1Bd .
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Correlation dimension

It is related to a set ),1(),0( xxS , which is typically the trajectory of a discrete-time 
system ))(()1( txftx .

Given 0r , the correlation function )(rC  is defined as the number of pairs of points of S
(w.r.t. the total number of pairs) whose distance is less than r :

)(),(pairs#

)()(s.t.)(),(pairs#
lim)(

jxix

rjxixjxix
rC

t

S  has dimension Cd  if, for small r , )(rC  obeys the power law 

CdrrC )(       or equivalently     rdrC C loglog)(log

Letting 0r , we have the definition of correlation dimension

r
rC

d
r

C log
)(log

lim
0
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Remark: given a trajectory, )(rC  is numerically computed for several r  and then )(rC  is 
plotted w.r.t. r .

Since rdrC C loglog)(log , the slope (on log scales) is the estimate of Cd .

Example: Lorenz system and Henon map in chaotic regime 

05.2Cd 23.1Cd
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Remark: as the system order n  increases, the computation of the correlation dimension 

Cd  becomes more convenient than that of the “box-counting” Bd .

As a matter of fact, the number of boxes needed for computing Bd grows exponentially
with n .

It can be shown that, for any set S , the following inequality holds: 

CB dd
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Liapunov dimension

It is related to an attractor A, whose Liapunov exponents are

nLLL 21

It can be shown that, for all nm

mm LLLS 21expexp

is the average expansion rate (if 1) or 
contraction rate (if 1) of the m-
dimensional volumes along the trajectory. 

Typical (dissipative) systems have 0nS .



C. Piccardi – Politecnico di Milano – ver. 18/09/2014 21/30 

If A is a chaotic attractor then 011 LS . Thus mS  (as a function of m) is typically 
shaped as in the figure.  

Note that 

0kS , i.e. k -dim volumes expand

01kS , i.e. )1(k -dim volumes contract

There exists a non-integer value Ld
( 1kdk L ) such that Ld -dim volumes
remain unchanged. 

The attractor A has dimension Ld .

Kaplan-Yorke formula gives an estimate of Ld  by linear interpolation: 

1k

k
L L

S
kd      , where 0|max mSmk
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Example: Henon map ( 2n )

Computing the Liapunov exponents gives 39.01L , 59.12L . Thus 1k  and 

25.159.1/39.01Ld

Example: Lorenz system ( 3n )

905.01L , 02L , 57.143L .

Thus 2k  and 

062.257.14/905.02Ld
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FRACTAL GEOMETRY AND DYNAMICAL SYSTEMS

When studying nonlinear dynamical systems, fractal geometries are found in many 
circumstances. 

Typically (but not always…), chaotic attractors are fractal sets.

A basin of attraction (of an equilibrium, of a limit cycle, of a chaotic attractor, even of 
the infinity…) can have fractal boundary.

In the space of the system parameters, the regions where the system has a given 
qualitative behavior can have fractal boundary.
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Chaotic attractors

Example: Henon system        Example: periodically forced mechanical system 
(discrete-time, 2n )                       (continuous-time, periodic, 2n )
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Typically, a chaotic attractor has fractal dimension. But there are exceptions:

Tent map: 02ln1L  (chaos) but )(tx  densely 
covers the interval ]1,0[  (thus 1d , integer).

Logistic map: at ...5699456.3rr  (the border of chaos), we have 5.0Cd  (fractal)

but 01L .

chaotic attractor fractal attractor (“strange”)
( 01L )               (d  non integer) 
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Basins of attraction

Example: Henon map 

The white region is the basin of attraction of a 
period-2 cycle.

The set has the same structure at arbitrarily 
small scale (self-similarity).
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Parametric portraits

Example: Mandelbrot set 

The map

ctztz 2)()1(

where z  and c  are complex, is equivalent to a real-valued 2-nd order system (2 state 
variables, )Re(zx  and )Im(zy , and 2 parameters, )Re(ca  and )Im(cb ). 

In the complex plane of c, the Mandelbrot
set M  (the white set in the figure) is the 
set of parameter values such that the 
trajectory started at 0z remains 
bounded.

The boundary of M  is a fractal set.
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Given Mc  (a point of the Mandelbrot set), there exists a set B  of initial states )0(z
giving rise to bounded trajectories (B  is non-empty, as it contains at least 0)0(z ).

The boundary of B  is called Julia set,
and it is a fractal set.

In the figure, the initial states )0(z
giving rise to bounded trajectories 
are depicted in white. 

(a) ic 78.017.0
(b) zooming into figure (a) 
(c) ic 32.038.0
(d) ic 043.032.0
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EXERCISES

1. (Sierpinski carpet) 
Consider the process shown in the figure. The closed unit box is divided 
into nine equal boxes, and the open central box is deleted. Then this 
process is repeated for each of the eight remaining sub-boxes, and so 
on. The figure shows the first two stages. 

a) Sketch the next stage 3S .
b) Show that the limiting fractal, known as Sierpinski carpet, has zero 
area.
c) Find the box-counting dimension. 

1S                                    2S

2. (Fractal attractor) 
Consider the forced pendulum tFb cossin , with 22.0b , 7.2F .
a) Starting from any reasonable initial condition, use numerical integration to compute )(t . Show that the time series 
has an erratic appearance, and interpret it in terms of the pendulum’s motion. 
b) Plot the Poincaré section by strobing the system whenever kt 2 ,where k  is an integer. 
c) Zoom in on part of the strange attractor found in (b). Enlarge a region that reveals the fractal features of the 
attractor. 

3. (Fractal basin boundary) 
Consider again the pendulum of exercise 2, but now let 2.0b , 2F .
a) Show that there are two stable fixed points in the Poincaré section. Describe the corresponding motion of the 
pendulum in each case. 
b) Compute the basins for each fixed point. Use a reasonably fine grid of initial conditions, and then integrate from 
each one until the trajectory has settled down to one of the fixed points (establish a criterion for the convergence). 
Show that the boundary between the basins looks like a fractal. 


