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BIFURCATION ANALYSIS OF THE BUCK CONVERTER 1511

Figure 3. Voltage and current values of period T cycles undergoing a grazing bifurcation (left panels) and
a boundary-intersection crossing bifurcation (right panels). In the boundary-intersection crossing, the blue line
highlights the simultaneous crossing of the threshold and of the surface i = 0.

for X0 and

(4) (v, i) =

(
QQs

1 +QQs
,

Qs

1 +QQs

)

forX1. Notice that f (s)(x) admits an infinite number of stationary orbits, but onlyX0 satisfies
the constraint i = 0. If either X0 or X1 is entirely contained in the region of definition of
the respective vector field, then it is also a solution of system (1). These solutions are not
interesting in applications, and under suitable conditions (detailed in the next section) both
are not admissible. In this case, the system must settle either on a limit cycle of period nT for
some natural n, or on more complex attractors. The regions of existence of these attractors
are separated by an intricate set of bifurcations, including both smooth bifurcations, like flips
and tangent bifurcations of cycles, and DIBs (see [11]), that involve the nontrivial interaction
of attractors with the discontinuity boundaries. Smooth bifurcations can be analyzed and
continued using standard methods (see, for example, [13, 14, 4]), while here we report the
conditions that define the two types of DIBs present in the model. In all cases, we suppose
that a periodic orbit of period nT exists, thus satisfying the equations

ẋ(t)− f (j)(x(t), p) = 0,
x(0) − x(nT ) = 0.

3.1. Boundary-intersection crossing. This bifurcation takes place when a periodic orbit
simultaneously crosses two intersecting discontinuity boundaries, as in the examples in Figure
3 (right panels). In particular, in our model this can happen when an orbit touches a corner
of the threshold signal, or when it crosses the zero-current surface and the threshold at the
same time. This last case in particular marks the transition between CCM and DCM. In the
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Figure 4. The blue lines represent bifurcations of the analyzed attractors. In this case, the regions of
existence of two stationary solutions X0 and X1 are delimited by two boundary-intersection crossing curves.

Figure 5. Two cycles obtained for Q = 2.5, Qs = 15, and T = 0.22 and different values of Vr and Vd. The
one in the left panel slides along the surface i = 0 for a fraction of its period, and therefore the converter works
in DCM, while the one on the right has strictly positive current, so that the converter works in CCM.

On the border of this region, the only admissible stationary solution (either X0 or X1) disap-
pears through a boundary-intersection crossing with the corners of the threshold signal, while
inside the region two qualitatively different cycles of period T may exist: one that slides on
Hs(x) = 0 for a fraction of its period, and one that does not, as shown in Figure 5. The
transition from the CCM cycle to the DCM one is given by the boundary-intersection cross-
ing curve in the center of Figure 6. In this figure and those that follow, we describe with a
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Flip/fold along a boundary 
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Figure 2. Border-fold bifurcation. Bifurcation curves: LP, fold (limit point, red); BC s, border collision of
the stable fixed point (v̄−, left; v̄+, right) of map (3.2) (green); BC u, border collision of the unstable fixed point
(v̄+, left; v̄−, right) of map (3.2) (blue). Region labels: 0, no fixed point in V −(β) := {v : hNF(v,β) < 0}; 1,
v̄− is the only fixed point in V −(β); 2, both fixed points v̄± lie in V −(β).

4. Case II: Border-flip bifurcation. Let the dynamics in the center manifold Zc be
described by the one-dimensional system

(4.1) u !→ f(u,α), u ∈ R1,

with f0 = 0 (fixed point condition) and f0
u = −1 (flip condition). Through a parameter-

dependent translation, we can ensure that f(0,α) = 0, i.e., that u = 0 is a fixed point for all α
in a neighborhood of α = 0. Under condition (i), map (4.1) can be reduced to NF (first step;
see Appendix B.1) with invertible changes of variable and parameter v = v(u,α), β = β(α),
becoming

(4.2) v !→ −(1 + β1)v + sv3 + O(v4),

with s = sign((1/4)(f0
uu)2 + (1/6)f0

uuu). In these variables, the flip curve has equation β1 = 0
in the plane (β1,β2), and the corresponding nonhyperbolic fixed point is located at v = 0.
Moreover, parameters can be chosen so that the border collision of the fixed point in the origin
has equation β2 = 0.

We now turn our attention to the discontinuity boundary (2.5) (second step; see Appen-
dix B.2). Condition (ii), ensuring transversal intersection of the center manifold Zc and the
discontinuity boundary H, implies local existence and uniqueness of a smooth function

σ(β) = σ0
β1

β1 + σ0
β2

β2 + O(∥β∥2)

such that the intersection of H with Zc is located at v = σ(β). Moreover, thanks to the
parameter choice in (4.2), σ0

β1
= 0 since the fixed point v = 0 lies on H when β2 = 0. Then by

condition (iii) (see Appendix B.3 for the analytical expression) we know that, moving along
the flip curve, that is, along the β2-axis, the fixed point at v = 0 crosses H at β2 = 0. As a
consequence, we have σ0

β2
̸= 0.

DISCONTINUITY INDUCED BIFURCATIONS OF NONHYPERBOLIC CYCLES 69
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Figure 3. Border-flip bifurcation. Bifurcation curves: PD, flip (period doubling, red); BC s,u
1 , border

collision of the fixed point v = 0 (stable and unstable branches, blue); BC s,u
2 , border collision of the stable or

unstable period-two cycle. Region labels: 0, no fixed point or period-two cycle in V −(β) := {v : hNF(v,β) < 0};
1, v = 0 is a fixed point in V −(β) and there is no period-two cycle, or it does not lie entirely in V −(β); 2, the
fixed point v = 0 coexists in V −(β) with the period-two cycle.

We are now ready to find the equation of the border collisions in the plane (β1,β2) (third
step). Near (v,β1) = (0, 0) the NF map (4.2) iterated twice has one fixed point in v = 0 (which
is also a fixed point of map (4.2)) and two others in v̄±(β) = ±

√
sβ1 + O(∥β∥2) (period-two

cycle). In particular, v̄± lie on discontinuity boundary (2.5) along the curves

(4.3) ±
√

sβ1 = σ0
β2

β2 + O(∥β∥2).

Since σ0
β2

̸= 0, (4.3) for small ∥β∥ becomes

(4.4) ±
√

sβ1 ≃ σ0
β2

β2

and gives the asymptotics, locally to β = 0, of the border-collision bifurcation curves involving
the two points v̄± of the period-two cycle. The invertible parameter change β = β(α) provides
the asymptotics in the original α parameters.

Depending upon the sign of s in the NF map (4.2), of σ0
β2

in (4.4), and of h0
u in (ii), there

are eight generic cases. However, again, only two cases are relevant (see Figure 3), because
all others can be reduced to these two by suitable parameter changes. Here, both the four
cases with σ0

β2
< 0 and those with h0

u < 0 are symmetric with respect to the β1-axis to the

corresponding cases with σ0
β2

> 0 or h0
u > 0. Also note that only half of the β2-axis can be

said to belong to the flip curve PD, since along the other half the fixed point v = 0 lies on the
undescribed side of the discontinuity boundary (2.5); i.e., hNF(0,β) > 0. Similarly, only one
of the two branches in (4.4) constitutes the border-collision curve involving the period-two
cycle (stable, BCs

2; unstable, BCu
2), since along the other branch hNF(v̄±,β) ≥ 0.

5. Case III: Border-NS bifurcation. Let the dynamics in the center manifold Zc be
described by the two-dimensional system

(5.1) u &→ f(u,α), u ∈ R2,
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Figure 6. Two stable cycles of period T exist in the upper part of the bifurcation diagram and are separated
by a curve of boundary-intersection crossing.

string (n,m, p) a cycle that has period nT , that intersects the threshold 2m times during one
period, and that has p distinct segments on the surface i = 0. Thus, the cycles in Figure 5
have strings (1, 1, 0) and (1, 1, 1), respectively. As we see in Figure 6, the region of existence
and stability of these T -periodic orbits is bounded from below by two flip curves, and on the
side by two boundary-intersection crossings, which coincide with the limit of existence of the
stationary solutions. As we mentioned in the previous section, these two cycles are the most
commonly used in applications, and, in particular, (1, 1, 0)-type cycles are chosen in high-
power applications where the current ripple must be minimized, whereas (1, 1, 1)-type cycles
are used in low-power applications, where working in DCM allows the use of low-frequency
threshold signals and hence reduces the losses caused by switching.

Along the boundary-intersection crossing curve in the center of Figure 6 we encounter
three codimension-two points (see Figure 7): two grazing-flip and one grazing-fold. Following
the curves that emanate from these points, and their subsequent branchings, we can isolate
the regions of existence of four qualitatively different attractors of period 2T . Notice that the
cycles (2, 1, 1) have period 2T and only two switches per period, and so they have half the
switching frequency of any cycle of period T (which must switch twice per period). These
could therefore be of interest in cases where low switching frequencies are preferable. In the
center of the figure, some of these cycles coexist with one of period T . A schematic blow-
up of the center of the bifurcation diagram is given in Figure 8, where the codimension-two
points mentioned above are labeled P1, P2, and P3, and all the invariant sets (stable and
unstable) involved in each bifurcation are detailed. Moving further down in the diagram, an
intricate set of smooth and nonsmooth bifurcations separates attractors of longer period and

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1514 A. COLOMBO, P. LAMIANI, L. BENADERO, AND M. DI BERNARDO

−0.4 0.2 0.8 1.4
0

0.7

BICBIC

BIC = boundary intersection crossing

Vr

Vd

X1X0

Figure 4. The blue lines represent bifurcations of the analyzed attractors. In this case, the regions of
existence of two stationary solutions X0 and X1 are delimited by two boundary-intersection crossing curves.

Figure 5. Two cycles obtained for Q = 2.5, Qs = 15, and T = 0.22 and different values of Vr and Vd. The
one in the left panel slides along the surface i = 0 for a fraction of its period, and therefore the converter works
in DCM, while the one on the right has strictly positive current, so that the converter works in CCM.

On the border of this region, the only admissible stationary solution (either X0 or X1) disap-
pears through a boundary-intersection crossing with the corners of the threshold signal, while
inside the region two qualitatively different cycles of period T may exist: one that slides on
Hs(x) = 0 for a fraction of its period, and one that does not, as shown in Figure 5. The
transition from the CCM cycle to the DCM one is given by the boundary-intersection cross-
ing curve in the center of Figure 6. In this figure and those that follow, we describe with a
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Figure 7. Bifurcation curves of the cycles of period 2T .

Figure 8. Schematic diagram of the bifurcation curves in the center of Figure 7. For each curve a double
arrow points out the stable (in black) and unstable (in red) invariant sets involved on the two sides of the
bifurcation. The curves have been stretched to make the diagram more readable.
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Figure 9. The curves shown in the previous figures are superimposed on a bifurcation diagram obtained
through simulation. The colors correspond to limit cycles of different period, going from blue for cycles of period
T to red for cycles of period ≥ 16T and for aperiodic attractors. Notice that the stationary solutions on the two
sides have period T in the cylindrical state space, even though they correspond to steady states of the electrical
variables v and i.

chaotic dynamics. To obtain a rough picture of the complex invariant sets found in the rest
of the parameter plane, we present some numerical results obtained by direct simulation of
the system’s equations.

4.2. Numerical simulation. In Figure 9, we considered a grid of 501 × 351 points in the
(Vr, Vd) parameter plane and simulated the system for 200T with parameter values set at
each of the points on the grid. Each point was then colored according to the period of the
asymptotic solution exhibited by the system after transient. The resulting two-parameter
bifurcation diagram is shown together with the bifurcation curves obtained previously.

Observing the red regions in the diagram, which correspond to chaotic dynamics, we can
distinguish regions with two qualitatively different dynamics: one on the left (marked as A),
and another one on the bottom and right of the figure (marked as B). A plot of the peak-
to-peak map (or Lorenz map; see [24]) of the maxima of the current (see Figure 10 for two
representative examples) shows that in region A the peak-to-peak map of the attractor is
nearly filiform (i.e., points are roughly distributed along one or more curves; see [5]), whereas
in region B it is a thick cloud of points. Since the peak-to-peak map is nothing other than a
particular Poincaré map, this implies that the chaotic attractor is nearly two-dimensional in
region A, while its fractal dimension is between 2 and 3 in region B. In other words, in region
A, the behavior of the system at regime is well approximated by that of the one-dimensional
map obtained from the peak-to-peak plot, while in region B the chaotic dynamics is more
complex.



Alessandro Colombo, Politecnico di Milano

ENOC 2014, July 6-11, 2014, Vienna, Austria

Discontinuity-induced catastrophic behaviour of a power converter

Fabio Della Rossa and Alessandro Colombo
Dipartimento di Elettronica, Informazione e Bioignegneria, Politecnico di Milano, Milan, Italy

Summary. abc

Introduction

Dc-dc power converters are a ubiquitous presence in complex electronic devices, used as an efficient means to provide the
many different voltage levels required by different components. A typical converter is composed of a simple RCL network
coupled with a comparator and a waveform generator; the desired output voltage is regulated by tuning the duty cycle of
the comparator output in order to transfer a suitable amount of energy to the RCL network. Despite this seemingly simple
structure, these circuits have been long known to exhibit extremely complex behaviour when the operating conditions
deviate from the nominal ones [7, 1, 5]. This is due to the discontinuous nature of the comparator and to the ensuing
discontinuity induced bifurcations. For this reason, dc-dc converters have often been used as a test bench for the theory
of discontinuous systems. Only recently though we have been able to identify a newly discovered singularity, called
the two-fold, in a dc-dc converter model. This sigularity, which is only begginning to be understood, is associated with
catastrophic behaviour and with the onset of a highly chaotic behaviour known as nondeterministic chaos. In the following
we describe this converter, and discuss its qualitative behaviour in a neighbourhood of a two-fold singularity.

The two-fold singularity

The dc-dc converter that we analyse here can be modelled as a discontinuous system with two different vector fields,
valid on two sides of a smooth discontinuity surface, that is, a particular case of a Filippov system[8]. Trajectories of a
Filippov system can cross the discontinuity when the vector fields point in the same direction across the discontinuity
surface, or they can slide on the surface when the vector fields point in opposite directions. In this case, the forward
trajectory is unique, and properly called a sliding trajectory, if the vector fields point towards the discontinuity, or it
may be not unique, and called an escaping trajectory, when the vector fields point away from the discontinuity. The
transition between regions of crossing, sliding, and escaping behaviour are given by points where the flow is tangent to
the discontinuity, forming a topological fold, as cases (i) and (ii) of Fig. 1, left panel. Particularly complex dynamics are
known two occur when the folds on the two sides of the discontinuity meet at one point, known as a two-fold, as in case
(iii) of Fig. 1. This singularity, where escaping, sliding, and crossing behaviour meet at a single point, was studied in
[8, 9, 2, 6, 3, 4]. There it was shown to be a possible generator of limit cycles and sudden onset of chaos through a set of
codimension-1 bifurcations. So far, little is known about the higher codimension bifurcations associated with it.

Model analysis
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Figure 1: Left panel: at a visible fold (i) trajectories curve away from the discontinuity, at an invisible fold(ii) trajectories curve towards
the discontinuity, at a two-fold (iii) two different visible or invisible fold lines intersect. Right panel: a DC-DC boost converter.

The circuit is shown in Fig. 1, where the output voltage v

out

is required to be larger than the supply voltage E. [”where”

means in the figure? Is it not so outside the figure?] Using the inductor corrent i
L

and the capacitor voltage v
C

as state
variables, a realistic model of the boost circuit depicted in Fig. 1 is
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and the voltage output measured on the load R is given by v

out

= rCR
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i
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u + R

rC+R

v

C

. Neglecting the capacitor
resistance r

C

, the system can be rewritten as
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Fig. 1. The Teixeira singularity. Typical orbits of the vector fields f± are
shown. Regions are labelled as in the text: CRi crossing regions, SL sliding
region, ES escaping region.

around a two-fold singularity is divided into four regions: one
where the vector field points towards the manifold from both
sides, named the sliding region (SL); one where the vector
field points away from the manifold from both sides, named
the escaping region (ES); and two where the vector field
normal component to the manifold has the same direction on
the two sides, named the crossing regions (CR1 and CR2).
In the particular case of a Teixeira singularity, (Figure 1) the
curvature of the vector fields on the two sides of the switch-
ing manifold wraps orbits around the singularity, generating
intricate dynamics that depend on the relative direction of the
vector fields at the singularity.

Ideal sliding dynamics can be assumed to apply in
the sliding and escaping regions, where σ(x) = 0 and
σxf+(x)σxf−(x) < 0. Sliding orbits herald a loss of unique-
ness of solutions. In the sliding region where σxf+(x) < 0 <
σxf−(x) trajectories from f±(x) are attracted to Σ in finite
time, and are non-unique in reverse time. In the escaping
region where σxf−(x) < 0 < σxf+(x) trajectories from
f±(x) are repelled away from Σ in finite time, and are non-
unique in forward time. Sliding orbits, confined to the open
regions satisfying these conditions, are solutions of

ẋ = F(x) :=
σxf

−(x)f+(x) − σxf
+(x)f−(x)

σx(f
−(x) − f+(x))

(3)

:=
1

σx(f
−(x)− f+(x))

F̃(x). (4)

The normalised sliding vector field F̃(x) is obtained by
multiplying F(x) by the scalar function σx(f−(x)− f+(x)),
which goes to zero at the singularity. Hence the dynamics
of F(x) and F̃(x) are equivalent except at the singularity,
where F̃(x) has an equilibrium due to the normalisation. As
a consequence, orbits that reach the singularity or depart from
it asymptotically in F̃(x), do so in finite time in F(x). Addi-
tionally, orbits of F̃(x) and F(x) flow in opposite direction in
region ES, where σx(f−(x)−f+(x)) is negative. Keeping in
mind these important differences, sliding dynamics around the
singularity can be effectively analysed by studying the orbits
of F̃(x).

Fig. 2. Dynamics around the Teixeira singularity. Left: the benign case,
orbits spiral around from the escaping to sliding region. Right: the diabolical
case, a double cone creased at the switching manifold delimits regions of
attraction (surrounding the sliding region), of repulsion (surrounding the
escaping region), and of spiralling flow (outside the double cone).

III. CLASSIFICATION OF THE DYNAMICS

Close to a Teixeira singularity, several types of local dynam-
ics are possible. In particular, as shown in Figure 2, in one case
(left panel), trajectories flow safely past the singularity, and
therefore it could certainly be missed. In a potentially more
dangerous form (right panel in Figure 2), the singularity sits at
the apex of a pair of creased cones – a ‘nonsmooth diabolo’
– attracting orbits within one and repelling them within the
other, and trajectories may reach the singularity via the sliding
region, where lack of uniqueness at the singularity provides
the conditions for a nondeterministic form of chaos [11], [12].
Between the two cases is a bifurcation associated with the birth
of limit cycles.

It is possible to give analytical conditions to distinguish
among the various cases as shown below. Without loss of
generality we assume σ(x) to be a linear function of x in the
region of interest, so that σx does not depend on x and σxx = 0
(this is achieved with a suitable change of variables near any
smooth portion of the switching manifold). As shown in [9],
the dynamics in the neighbourhood of the Teixeira-singularity
can be classified as follows. Let the singularity be at x̂. Define
the two quantities v and w as

v = −
σxf̂

−
x f̂+

σxf̂
+
x f̂+

w = −
σxf̂

+
x f̂−

σxf̂
−
x f̂−

. (5)

These definitions greatly simplify the analysis, since v and w
go to zero when f̂± is tangent to the tangency line of f∓,
while their product goes to unity when f̂+ and f̂− have the
same direction. In this case one can either have v, w < 0, in
which case f̂+ and f̂− have opposite orientations, or v, w > 0,
when they have same orientation. Notice that the denominators
are bounded away from zero by nondegeneracy condition 2 in
Definition 1.

Then, it is possible to classify the dynamics close to the
singularity by using the quantities v and w. In particular, let
a maximal orbit describe the concatenation of all segments of
a single trajectory that lie above, below, or on the switching
manifold, including intersection points where the orbit crosses
or begins to slide. Orbits in the neighbourhood of the Teixeira
singularity then satisfy the following:

(i) If vw > 1 and v, w < 0: any maximal orbit crosses
the switching manifold an infinite number of times.
There exist a pair of invariant surfaces that meet at the
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Figure 6. Composite of the sliding portrait (s1) and the crossing portrait (c3u) in Figure 5. For p < 0 all
orbits reach the sliding region, and a crossing orbit is illustrated. For p > 0 this system has an invariant set
near the singularity, generated by the forward evolution of the hatched region in ES. The limit cycle (fixed point
of the map φ) is shown.

away from the singularity, either converging toward a pseudonode in (s1), or leaving the local
neighborhood in (s2).

For p > 0, however, (c1) is fundamentally different from (c2) and (c3). In (c1), crossing
orbits leave the neighborhood of the singularity in either forward or backward time, and
importantly, no crossing orbits exist locally that pass from ES to SL. In (c2) and (c3), there
always exist crossing orbits that can locally pass from ES to SL. The crossing map contains a
fixed point of node or focus type. If the fixed point is stable ((c2s) or (c3s)), then all crossing
orbits that emerge from ES sufficiently close to the singularity converge toward the fixed point.
If the fixed point is unstable ((c2u) or (c3u)), then all crossing orbits sufficiently close to the
singularity will reach SL in finite time.

Clearly p > 0 produces richer crossing dynamics than p < 0, but when the associated
sliding dynamics is taken into account, the full implications of the Teixeira singularity become
apparent. In (s1) and (s2), for p > 0, all sliding orbits sufficiently near the singularity pass from
SL to ES. In (s2), sliding orbits asymptotic to the unstable manifold of a pseudosaddle either
approach the singularity in finite time or leave the local neighborhood. In (s1), however,
all local sliding orbits converge on the singularity in finite time. The path followed by an
orbit that enters ES through the singularity is then not uniquely determined, as explained in
section 3.1.

3.4. Nondeterministic chaos. A particularly interesting case is revealed if we take the
crossing portraits (c2u) or (c3u) and combine them with the sliding portrait (s1), as exemplified
in Figure 6 and the following result.

Proposition 3.1. If a system exhibits a Teixeira singularity with the crossing portraits (c2u)
or (c3u) with p > 0, and the sliding portrait (s1), then locally

- all crossing orbits reach SL, with the exception of the unstable limit cycle,
- all sliding orbits reach ES via the singularity, and therefore
- all orbits visit the singularity recurrently.
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Figure 2: Bifurcation analysis of system (1). The bifurcation diagram in the upper left panel identifies 7 regions with topologically
equivalent state portraits, depicted in panels 1⃝– 7⃝. The bifurcation curves are: a limit point bifurcation (LP, blue), a two-fold bi-
furcation (light red (Tii) regards an invisible-invisible two-fold, dark red (Tvi) regards a visible-invisible two-fold) and a cusp-fold
bifurcation (light green (C1) involves a crossing limit-cycle collapsing on the two-fold singularity, along the dark green (C2) no cycle
is observed). In the state portraits, light, medium, and dark gray identify crossing ((CR±) if trajectories cross from below to above the
discontinuity surface, (CR∓) if trajectories cross from above to below), sliding (SL), and escaping (ES) regions of the discontinuity
boundary. Light and dark purple lines are tangency points of the vector fields below and above, respectively. They are solid where
the tangency is visible, dashed where the tangency is invisible. Diamonds identify standard equilibria, dots equilibria of a sliding or
escaping vector-field. Green points are stable, blue points are saddles, red are unstable. Parameter values: yR = 2.5, a = 15 (region
1), yR = 2.5, a = 4.5 (2), yR = 2.5, a = 3.8 (3), yR = 2, a = 6.2 (4), yR = 1.2, a = 17 (5), yR = 1.2, a = 10 (6), yR = 1.2,
a = 4.9 (7). Other parameter values: b = 0.01, w = 5, k = 30.

a cusp-fold and a two-fold bifurcation. Much work has been done on the bifurcation analysis of non smooth systems
[9, 3, 13, 7, 8]. As we will see in the following, however, the theory is still far from complete. On the limit-point curve
two equilibria of the sliding or escaping vector field collide and disappear. This is a well known bifurcation. On the
cusp-fold bifurcation curve a cusp (a cubic tangency of a vector field whit the discontinuity boundary) crosses the two-
fold singularity. At a cusp-fold bifurcation one of the two fold lines changes from visible to invisible. A full unfolding
of this bifurcation is yet unknown. On the two-fold bifurcation curve an equilibrium of the sliding or escaping region
crosses the two-fold singularity. The two-fold bifurcation transitions between three different scenarios along the depicted
curve, which have been studied in [4] (in the notation of [4], 4⃝→ 6⃝ is an invisible-invisible two-fold (s2)+(c1), 5⃝→ 6⃝
is an invisible-invisible two-fold (s1)+(c1), 3⃝→ 7⃝ is a visible-invisible two-fold). At the codimension-2 point P1 a
non-hyperbolic equilibrium crosses the two-fold singularity; at P2 an equilibrium crosses a cusp-fold singularity. These
codimension-2 points have not yet been unfolded.
The above analysis illustrates how even a simple application-driven model is capable of exhibiting a wealth of poorly un-
derstood bifurcation phenomena. This underlines the importance of furthering the theoretical understanding of nonsmooth
systems.
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is observed). In the state portraits, light, medium, and dark gray identify crossing ((CR±) if trajectories cross from below to above the
discontinuity surface, (CR∓) if trajectories cross from above to below), sliding (SL), and escaping (ES) regions of the discontinuity
boundary. Light and dark purple lines are tangency points of the vector fields below and above, respectively. They are solid where
the tangency is visible, dashed where the tangency is invisible. Diamonds identify standard equilibria, dots equilibria of a sliding or
escaping vector-field. Green points are stable, blue points are saddles, red are unstable. Parameter values: yR = 2.5, a = 15 (region
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a cusp-fold and a two-fold bifurcation. Much work has been done on the bifurcation analysis of non smooth systems
[9, 3, 13, 7, 8]. As we will see in the following, however, the theory is still far from complete. On the limit-point curve
two equilibria of the sliding or escaping vector field collide and disappear. This is a well known bifurcation. On the
cusp-fold bifurcation curve a cusp (a cubic tangency of a vector field whit the discontinuity boundary) crosses the two-
fold singularity. At a cusp-fold bifurcation one of the two fold lines changes from visible to invisible. A full unfolding
of this bifurcation is yet unknown. On the two-fold bifurcation curve an equilibrium of the sliding or escaping region
crosses the two-fold singularity. The two-fold bifurcation transitions between three different scenarios along the depicted
curve, which have been studied in [4] (in the notation of [4], 4⃝→ 6⃝ is an invisible-invisible two-fold (s2)+(c1), 5⃝→ 6⃝
is an invisible-invisible two-fold (s1)+(c1), 3⃝→ 7⃝ is a visible-invisible two-fold). At the codimension-2 point P1 a
non-hyperbolic equilibrium crosses the two-fold singularity; at P2 an equilibrium crosses a cusp-fold singularity. These
codimension-2 points have not yet been unfolded.
The above analysis illustrates how even a simple application-driven model is capable of exhibiting a wealth of poorly un-
derstood bifurcation phenomena. This underlines the importance of furthering the theoretical understanding of nonsmooth
systems.
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