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the bouncing ball

if x = 0 then v 7! �⇢v

coefficient of 
restitution

ẋ = v

v̇ = �g
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A sliding mass with 
Coulomb friction

C

v

θ

x

ẋ = v

mv̇ = fg sin(✓) + C
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Formalism 1: 
hybrid system

if x 2 Gq then x 7! x

0

q 7! q

0

ẋ = fq(x, u)

fq(x, u)

Gq

the state of the system is (x,q)

reset map

input

“discrete state” or “mode”

continuous state

“discontinuity set” or “guard”
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Example: bouncing ball 
as a hybrid system

G1 := {(x, v) : x = 0}

if x 2 G1 then x 7! x, v 7! �⇢v

notice that the fixed point of 
the reset map coincides with a 

tangent point of the vector 
field

f1(x, v) :=

✓
v

�g

◆
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Chattering in a hybrid system 
(or Zeno effect)

an infinite number of switches in a finite time
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Abstract: Model-based nonlinear controllers like feedback linearization and control Lyapunov
functions are highly sensitive to the model parameters of the robot. This paper addresses the
problem of realizing these controllers in a particular class of hybrid models–systems with impulse
e↵ects–through a parameter sensitivity measure. This measure quantifies the sensitivity of a
given model-based controller to parameter uncertainty along a particular trajectory. By using
this measure, output boundedness of the controller (computed torque+PD) will be analyzed.
Given outputs that characterize the control objectives, i.e., the goal is to drive these outputs
to zero, we consider Lyapunov functions obtained from these outputs. The main result of this
paper establishes the ultimate boundedness of the output dynamics in terms of this measure
via these Lyapunov functions under the assumption of stable hybrid zero dynamics. This is
demonstrated in simulation on a 5-DOF underactuated bipedal robot.

Keywords: Hybrid Zero Dynamics, Parameter Sensitivity Measure, System Identification.

1. INTRODUCTION

Model based controllers like stochastic controllers Byl and
Tedrake (2009), feedback linearization Westervelt et al.
(2007), the control Lyapunov functions (CLFs) Ames et al.
(2014) all require the knowledge of an accurate dynamical
model of the system. The advantage of these methods are
that they yield su�cient convergence for highly dynamic
robotic applications, e.g., quadrotors and bipedal robots,
where exponential convergence of control objectives is used
to achieve guaranteed stability of the system. This is
especially true of bipedal walking robots where rapid expo-
nential convergence is used Ames et al. (2014). While these
controllers have yielded good results when an accurate
dynamical model is known, there is a need for quantifying
how accurate the model has to be to realize the desired
tracking error bounds. These application domains point to
the need for a way to measure parameter uncertainty and
a methodology to design controllers for nonlinear hybrid
systems, like bipedal robots, that can converge to the
control objective under parameter uncertainty.

The goal of this paper is to establish a relationship between
parameter uncertainty and the output error bounds on
systems with alternating continuous and discrete events,
i.e., hybrid systems, while considering a specific exam-
ple: bipedal walking robots. Inspired by the sensitivity
functions utilized for linear systems Zhou et al. (1996),
a parameter sensitivity measure is defined for continuous
systems and the relationship between the boundedness
and the measure is established through the use of Lya-
punov functions. In the context of hybrid systems, along
with defining the measure for the continuous event, an
impact measure is defined to include the e↵ect of param-

?
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Fig. 1. The biped AMBER (left) and the stick figure of
AMBER showing the configuration angles (right).

eter variations in the discrete event. The resulting overall
sensitivity measure thus represents how sensitive a given
controller is to parameter variations for hybrid systems.
When described in terms of Lyapunov functions, which
are constructed from the zeroing outputs of the robot, the
parameter sensitivity measure naturally yields the ultimate
bound on the outputs. Considering a 5-DOF bipedal robot,
AMBER, shown in Fig. 1, where a stable periodic orbit on
the hybrid zero dynamics translates to a stable walking
gait on the bipedal robot, the ultimate bound on this
periodic orbit will be determined through the use of a
particular controller: computed torque+PD.

The paper is structured in the following fashion: Section 2
introduces the robot model and the control methodology
used–CLFs through the method of computed torque. Sec-
tion 3 assesses the controller used for the uncertain model
of the robot and establishes the resulting uncertain behav-
ior through Lyapunov functions. In Section 4, the resulting
uncertain dynamics exhibited by the robot is measured
formally through the construction of parameter sensitivity

measure, which is the main formulation of this paper on
which the formal results will build. It will be shown that
there is a direct relationship between the ultimate bound
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gives the desired result.

4. COMPLETED HYBRID SYSTEMS
& ZENO PERIODIC ORBITS

Completed hybrid systems allow Zeno executions to be
carried past the Zeno point. Let SHL be a SLHS then, as
the execution converges toward the Zeno point, h! 0. This
implies that after the Zeno point is reached, there should be
a switch to a holonomically constrained dynamical system
with holonomic constraint ⌘ = h. Let D

h

= (Z, fh

L

) be the
dynamical system obtained from this unilateral constraint
as in (5) with Z the set in (10).

Traditionally, completed hybrid systems have been defined
in the following manner [3, 4, 18, 22, 23, 24] (and are often
termed complementary Lagrangian hybrid systems): if L
is a simple hybrid Lagrangian and SHL the corresponding
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Figure 1: A graphical representation of a SHS and
its associated completed hybrid system.

SLHS, the corresponding completed Lagrangian hybrid sys-
tem4 is:

SH L :=

8
<

:

D
h

if h(q) = 0 , dh(q)q̇ = 0,
and �(q, q̇) > 0

SHL otherwise

where � is the Lagrange multiplier obtained from h. Systems
of this form have been well-studied in the above references,
and conditions have been given on how to practically simu-
late completed hybrid systems by truncating the executions
in a formal manner (see [23, 24]).

While the notion of a completed hybrid system has proven
very useful, we wish to extend it to include the possibility
of unilateral constraints in the “post-Zeno” domain D

h

that
would cause the lagrange multiplier to switch sign (causing
a switch back to the pre-Zeno domain). The second con-
sideration is that we want this more general definition of
a completed hybrid system to include as a special case the
previous definition while simultaneously being able to model
physical situations that occur with bipeds.

With this in mind, we consider the following definition of
a generalized completed hybrid system (see Fig. 1).

Definition 7. Let SHL be a SLHS associated to a hybrid
Lagrangian L = (Q, L, h). A completed SLHS5 is a tuple:

SH
"

L := (�, D, G, R, F ), where

• � = {(p, z), e
s

= (p, p), e
z

= (p, z), e
p

= (z, p)},

• D = {D
p

, D
z

} where D
p

= D
h

and D
z

⇢ Z satisfying:

�(q, q̇) � 0 if (q, q̇) 2 D
z

, (12)

• G = {G
es , G

ez , G
ep} where G

es = G
h

\Z, G
ez = Z

and G
ep ⇢ D

z

,

• R = {R
es , R

ez , R
ep} where R
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h

(which depends
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ez = I and R

ep :

G
ep ! D

p

satisfying:

�(R
ep(q, q̇))  0 for (q, q̇) 2 G

ep , (13)

• F = {f
p

, f
z

} where f
p

= f
L

and f
z

= fh

L

.

4As was originally pointed out in [3], this terminology (and
notation) is borrowed from topology, where a metric space
can be completed to ensure that “limits exist.”
5We make the dependence of the system on the coe�cient
of restitution " explicit since it is the main object of interest.
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That is, the set of points where the knee angle is zero with
zero velocity, i.e., the set of points where the leg is straight
and the knee is “locked.” Moreover, it is easy to verify that
¨hR < 0 for a large subset of this set, and thus there are
stable Zeno equilibria. Physically, the existence of these stable
Zeno equilibria imply that knee-bounce will occur (formally
verifying the experimental behavior witnessed by McGeer).

As a result of these stable Zeno equilibria, it is necessary to
complete the Lagrangian hybrid system model HR to allow
for solutions to continue after knee locking. The details of this
completion process for this system can be found in [41], but to
summarize one obtains a new hybrid system H R graphically
illustrated in Figure 3(c) where a “post-Zeno” domain is added
where the leg is locked, transitions to that domain occur when
the set ZR is reached, and transitions back to the original “pre-
Zeno” domain occurs at foot-strike with reset map being the
standard impact equations considered in the bipedal robotics
literature [37]. In the case of perfectly plastic impacts at the
knee (when e = 0 for RR as computed with (15)), this
completed model is the standard model of a bipedal robot
with knees that lock [43]. What is of interest is when the
assumption of perfectly plastic impacts at the knee is relaxed,
and knee-bounce occurs.

It was proven in [41] using Theorem 3 and Theorem 4 that
if there exists a locally exponentially stable plastic periodic
orbit for H R, i.e., a periodic orbit with e = 0, and if
¨hR(✓⇤, ˙✓⇤) < 0 for (✓⇤, ˙✓⇤) a Zeno equilibrium point that
is a fixed point of this plastic periodic orbit, then for e > 0

sufficiently small there exists a Zeno periodic orbit for H R,
i.e., a periodic orbit which contains a Zeno execution. In
simple terms, this result simply states that if there exists
bipedal robotic walking for the assumption of perfectly plastic
impacts at the knees, there there will exist robotic walking
for small amounts of knee-bounce. To apply this result, we
begin by producing a walking gait with plastic impacts at the
knees, the trajectories for which can be seen in Figure 4(a).
The exponential stability of the periodic orbit associated with
this walking gait can be checked by numerically computing the
Poincaré map at the fixed point (✓⇤, ˙✓⇤), and we can check that
the Zeno equilibrium point (✓⇤, ˙✓⇤) is Zeno stable by noting
that ¨hR(✓⇤, ˙✓⇤) = �50.135 < 0. Thus there will be walking
even with knee bounce as long as it is sufficiently small. In
fact, we find that even taking e = 0.25 there is still a stable
walking gait; the trajectories of this walking gait can be seen
in Figure 4(b).

V. CONCLUSION

In this paper, we developed Lyapunov-like sufficient condi-
tions for Zeno stability. The proof methodology had two main
components. First, we defined a class of hybrid systems with
simple conditions for Zeno stability. Then, we proposed spe-
cial structured (Lyapunov-like) functions that map executions
of interesting hybrid systems to executions of the simple Zeno
hybrid systems on the first quadrant of the plane.

Our Lyapunov-like theorem applies equally well to isolated
and non-isolated Zeno equilibria. Covering both cases was
necessary, since we observed that a stable Zeno equilibrium
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Fig. 4. The trajectories of the bipedal robot for a walking gait in the case
of plastic impacts at the knee (a) and knee-bounce, or Zeno behavior, at the
knee (b).

displayed asymptotic stability if and only if it was isolated.
Furthermore, since most interesting Lagrangian hybrid systems
only have non-isolated Zeno equilibria, the study of the sta-
bility of non-isolated Zeno equilibria is fundamental. Because
most of the existing conditions for Zeno behavior required
either isolated Zeno equilibria or asymptotically stable Zeno
equilibria, they all had similar limitations.

Our applications to Lagrangian hybrid systems showed that
our sufficient conditions for Zeno stability can handle some
non-trivial, high dimensional hybrid systems. Furthermore,
the Lyapunov-like sufficient conditions specialize to algebraic
constraints on the Zeno equilibria. In particular, in Lagrangian
hybrid systems, we can infer Zeno stability properties based
on the zeroth-order approximation to the vector fields at the
Zeno equilibria, similar to the local approximation results of
[1], [3], [5].

Future work on Zeno stability must push the theory towards
real-world systems. As summarized in Subsection IV-C, the
theory from this paper has been used to characterize knee-
bounce phenomena in bipedal robotic systems. More work
is needed to extend the theory for reasoning about practical
systems from robotics, control, and verification in which Zeno
behavior occurs in the models.

From A. Ames, multiple papers
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Formalism 2: 
Filippov system

ẋ = fq(x, u)

if x 2 Gq then

f1(x, u)
f2(x, u)

f3(x, u)

f4(x, u)

the state of the system is x

f(x, u) 2 Conv{fq1(x, u), fq2(x, u), . . .} Conv{f1, f2}
discontinuity set

state input
Assumption: 
the guards 
PARTITION the 
state space X
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Example: sliding mass as a 
Filippov system

ẋ = v

sliding vector fieldx

v

v̇ =

8
><

>:

fg
m sin(✓)� C if v > 0
fg
m sin(✓) + C if v < 0
fg
m sin(✓) + [�C,C] if v = 0
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Sliding, crossing, escaping, equilibria, 
and pseudoequilibria
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Figure 1. Dynamics at a switching manifold in a three-dimensional piecewise smooth system. The vector
field switches between f+ and f−. An orbit meeting the manifold may either: (i) cross through it, (ii) reach
it in finite time and then follow the sliding vector field fs, or (iii) escape it in finite time, though it may slide
along the manifold for some time before escaping.

The purpose of this paper is to present, in an organic and consistent framework, all existing
results regarding the local dynamics near the two-fold. This also includes some novel results
about particular forms of the two-fold that reveal its role in the sudden onset of periodic orbits
and recurrent nondeterministic dynamics.

The two-fold was already well defined in [14]. In a piecewise smooth vector field, disconti-
nuities are assumed to occur across a hypersurface called the switching manifold. Since it is a
hypersurface, we can speak of the manifold as locally having two sides, and generically there
may exist points where the vector field is quadratically tangent to one side of the manifold
or the other. We call such a tangency a fold, because in the projection along the flow the
switching manifold has a simple fold. This assumes the system to be at least two-dimensional.
In higher dimensions there may generically exist points where two folds intersect transversely,
so that the vector field is tangent to both sides of the manifold, and this simple object is a
two-fold. A two-fold is an important organizing center because it brings together all of the
basic forms of dynamics possible in a piecewise smooth system. Filippov [14] described three
basic forms of dynamics that would occur at a switching manifold: crossing, sliding, and es-
caping, depending on the orientation of the vector field either side of the switching manifold,
as illustrated in Figure 1. Crossing, shown in Figure 1(i), occurs where the component of the
vector field normal to the switching manifold has the same direction on both sides. In the two
other cases the normal component of the vector field switches direction, so that the vector
field is either directed towards the switching manifold, giving sliding as in (ii), or is directed
away from the manifold, giving escaping as in (iii).

At a fold (see Figure 2) the vector field on one side of the switching manifold changes its
normal direction, forming a boundary between crossing regions and sliding or escaping regions.
At a two-fold, the vector fields either side of the manifold both change their normal direction,
meaning that regions of all three dynamical behaviors—crossing, sliding, and escaping—meet,
and their boundaries intersect to form the singularity.

Escaping dynamics (see Figure 1(iii)) is typically neglected on the basis that it simply
constitutes a time-reversal of sliding, and that escaping regions cannot be reached by a sys-
tem in forward time, making consequences of forward time nonuniqueness in these regions
irrelevant [10, 11, 27]. This assumption is incorrect at a two-fold, which can channel sliding
dynamics into the escaping region. This gives whole families of orbits robust access to regions
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Figure 2. Tangencies in a piecewise smooth system, showing: (i) a visible fold, (ii) an invisible fold; these
form the boundaries between sliding (shaded) and crossing (unshaded) (reverse arrows to replace sliding with
escaping). (iii) Folds associated with the upper and lower fields cross to form a two-fold, where both vector fields
are tangent to the switching manifold (in the case illustrated, both folds are invisible).

of phase space that are infinitely repelling. This counterintuitive dynamical behavior, noticed
in Filippov’s seminal work [14], seems to have been overlooked ever since, though a similar
effect was discovered in the framework of nonstandard analysis [4] as the so-called canard
phenomenon. Canards are now a popular topic in singular perturbation theory [13,28], with
numerous applications, of which a few examples are in neuron modelling [24], chemical dy-
namics [6, 26], gas pressure dynamics [5], and ecology [9]. Despite qualitative similarities in
these approaches, their connection to the two-fold is as poorly understood as the two-fold
itself. These connections are not the subject of this paper, and we restrict our interest to
understanding the two-fold in the context of generic piecewise smooth dynamical systems.

The study of dynamics around a two-fold has been mainly limited to a lowest order
approximation in three dimensions [14,16,29,30]. Such local analysis reveals how an initially
smooth flow far from a discontinuity can evolve toward a state where its forward evolution
is set-valued. In this paper we review these results and extend them by carrying out a
comprehensive analysis of the nonlinear behavior of two-folds in three dimensions. In so
doing, we determine the invariant sets that are present near the two-fold and decode their
complex dynamics.

In section 2 we define the two-fold singularity and its three types. We discuss the first of
these, the invisible two-fold, or Teixeira singularity, in detail in section 3; we analyze its sliding
and crossing dynamics separately in sections 3.1 and 3.2, using them to reconstruct the full
system in sections 3.3 and 3.4. We briefly discuss the other forms, the visible (short for visible-
visible) two-fold in section 4, and the visible-invisible two-fold in section 5, with a remark
on their bifurcations in section 6. In section 7 we numerically simulate some particularly
interesting dynamics predicted in section 3, with some closing remarks in section 8.

2. The three flavors of two-fold. Consider a three-dimensional piecewise smooth system
of ordinary differential equations

(2.1) ẋ = f+(x) when h(x) > 0, ẋ = f−(x) when h(x) < 0,

where the dot denotes differentiation with respect to time t ∈ R and where h(x) is a regular
scalar function of the state vector x = (x0, x1, x2) ∈ R3. For simplicity we set h(x) = x0, since
any piecewise smooth system, in a region where h(x) = 0 defines a manifold, can be put into
this form through the appropriate change of variables [14,30]. Then, x0 = 0 is the switching
manifold. Following Filippov’s definition [14], the solution of (2.1) at the switching manifold

A. Colombo et al. / Physica D 241 (2012) 1845–1860 1847

Fig. 3. A pseudoequilibrium in a two-region system occurs where the two vector
fields point in opposite directions.

Example. Consider the one-dimensional system ẋ = sign(x),
where ⌃ is the point x = 0. The righthand side of the correspond-
ing differential inclusion is F = 1 where x > 0, F = �1 where
x < 0, and F = [�1, 1] at x = 0. Hence, at x = 0 the three so-
lutions x(t) = 0, x(t) = t , and x(t) = �t are admissible, as well
as any solution that remains in 0 for a finite time and then departs,
left or right, with unit speed.
As we see in the one-dimensional example above, a system may
admit constant solutions on a switching boundary. In general,
constant solutions of (2) come in two forms:

Definition 2.3. An equilibrium is a pointwhere fi(x) = 0 for some i.
A pseudoequilibrium is a point where 0 2 F(x), x 2 ⌃ .

Example. In n-dimensions, let the vector field change between f1
(in R1) and f2 (in R2) across ⌃ . Then the differential inclusion (3)
becomes

ẋ 2 F = {�f1 + (1 � �)f2}, (4)

where � = 1 in R1, � = 0 in R2, and � 2 [0, 1] on ⌃ . By (4),
pseudoequilibria appear when f1 and f2 are linearly dependent and
point in opposite directions, as illustrated in Fig. 3.

Over the last thirty years, piecewise smooth systems have
been redefined a number of times in slightly different ways.
Definitions 2.1 and 2.2 are the simplest and most commonly
used among those considered in [18]. They are similar to another
definition, albeit restricted to two-dimensional systems, given
in [57]. The term pseudoequilibrium in Definition 2.3, introduced
in [58], is now quite standard in the literature.

3. Boundaries

To study the dynamical features that distinguish smooth and
piecewise smooth dynamical systems, we concentrate on the
geometry of solutions at or near the switching boundary ⌃ .
To this end, it is convenient to introduce three mathematical
tools: a function to describe ⌃ , a derivative to detect tangencies
between solutions and boundaries, and an explicit formula for the
component of F along ⌃ in the cases when it exists and is unique.

We represent ⌃ as the zero set of a scalar function h : Rn 7! R,
with
⌃ = {x 2 Rn : h(x) = 0}. (5)
At points where ⌃ is a smooth hypersurface, we assume that h
is smooth and has nonzero gradient h,x (subscripts will denote a
derivative onlywhen preceded by a comma). Notice that the global
smoothness and differentiability of h is not a concern, since its
gradient will only be needed in local analysis.

We thenwrite the directional derivative of hwith respect to the
vector field in terms of Lie derivativesLfi h = h,x ·fi. Them-th order
Lie derivative will be written as Lm

fi h, e.g., L
2
fi h = Lfi(Lfi h).

Definition 3.1. A sliding vector is any vector fs(x) 2 F that lies
tangent to ⌃ for x 2 ⌃ .

Fig. 4. A planar piecewise smooth vector field that switches between f1 in region
R1 and f2 in region R2. At the switching boundary ⌃ we consider the inclusion F .
This gives sliding/escaping if F contains an element fs tangent to ⌃ , and crossing
otherwise.

According to Definition 2.2, solutions of system (2) that reach⌃
may cross through ⌃ if F contains no sliding vectors, or slide along
⌃ if F contains a sliding vector. Thus the switching boundary is
partitioned into three different regions as follows.

Definition 3.2.

• In a crossing region, F contains no sliding vectors.
• In a sliding region, F everywhere contains at least one sliding

vector, and all neighbouring vector fields fi point towards ⌃ .
• In an escaping region, F everywhere contains at least one sliding

vector, and at least one of the neighbouring vector fields fi point
into its corresponding region Ri.

As an example of the definition for an escaping region, consider
Fig. 2: the boundary separating regions R1 and R2 is an escaping
region where f1 and f2 both point away from ⌃ , but the boundary
intersection is also an escaping region where f1 points away from
⌃ but all others points towards it.

The distinction between sliding and escaping regions is impor-
tant: at a sliding region all solutions are confined to ⌃ in forward
time, while at an escaping region solutions may either continue
sliding or be ejected from ⌃ . Because of this dual nature of sliding
and escaping, they are sometimes referred to respectively as stable
and unstable sliding (see for example [59]).

Example. Consider the system

ẋ1 = sign(x2 + x21),
ẋ2 = 1, (6)

sketched in Fig. 4. The switching boundary⌃ is the curve x2 = �x21,
and we let R1 be the region above ⌃ , with R2 below. The righthand
side of the differential inclusion, F , is sketched in Fig. 4 with the
sliding vectors fs, and the corresponding dynamics is shown in
Fig. 5. The boundaries between crossing and sliding/escaping occur
at the tangencies T1 and T2, where the tangent vector to ⌃ , given
by (1, �2x1), lies along f1 and f2 respectively. Then escaping takes
place on ⌃ to the right of T2, and sliding to the left of T1.

In general, boundaries between crossing, sliding, and escaping
regions can occur either where ⌃ is nonsmooth, which we call
boundary intersections, or where ⌃ is smooth but tangent to one
of the fi, satisfying the tangency conditions
Lfi h = 0. (7)

Away from boundary intersections, we can write the vector
field near a switching boundary h = 0 as

ẋ =
⇢
f1(x) if h(x) > 0,
f2(x) if h(x) < 0. (8)

The differential inclusion for (8) is then given by (4). A sliding
vector, from Definition 3.1, is the element of (4) tangent to ⌃ ,
which fixes � = Lf1h(x)/(Lf2h(x) � Lf1h(x)), giving the sliding
vector field

pseudoequilibrium



Alessandro Colombo, Politecnico di Milano

Example: compute the sliding vector field of a 
Filippov system formed by 2 linear subsystems

f� :=

8
<

:

1
0
0

x0

x1

x2

f

+ :=

8
<

:

x1

1
0

fs?
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fs = �f+ + (1� �)f�

fs

f+

f�

� such that �f+
+ (1 � �)f�

is

tangent to the discontinuity sur-

face

�x1 + (1� �)1 = 0

�f+
0 + (1� �)f�

0 = 0

� =
1

1� x1

Example: compute the sliding vector field of a 
Filippov system formed by 2 linear subsystems

x0

x1

f� :=

8
<

:

1
0
0

f

+ :=

8
<

:

x1

1
0
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f

s =
1

1� x1

0

@
x1

1
0

1

A+
x1

x1 � 1

0

@
1
0
0

1

A =

0

@
0

1
1�x1

0

1

A

x0

x1

x2

f+

f�

x1 =
0 fs n

o

t

d

e

fi

n

e

d

!

fs
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Thought experiment

f+

f�

x1 =
0

fs

What happens to 
the Lyapunov 

exponents of a 
sliding trajectory?

3d
2d
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Other formalisms

Complementarity system 

Differential inclusion 

Switched system
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Common friction 
models

Coulomb model Stiction (static friction)

Stribeck effect

v

C

hysteresis
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(from “Hysteretic effects of dry friction: modelling and experimental studies” 
J, Wojewoda, A. Stefański, M. Wiercigroch and T. Kapitaniak, 2008)

experimental

numerical
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Case study: phase portrait of a 
man standing on an increasingly 

steep surface 
(with a Filippov model and Stribeck friction)

gravity

friction

Stribeck friction 
characteristic
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Case study: phase portrait of a 
man walking on an increasingly 

steep surface 
(with a Filippov model and Stribeck friction)

A new, non smooth 
bifurcation: 

the Boundary 
Equilibrium 

(more to come…)


