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Relatore
Note di presentazione
Good afternoon evrybody, I’m Fabio Della Rossa and I will present you a worg gathered in Politecnico di Milano on the bifurcation analysis of a magnetically controlled spacecraft. 

Even if the application we are talking about is very specific, the strength of this work is the using of bifurcation techniques on this type of problems, thing that allow us to deduce global characterizations looking at local behavior.
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Outline

• Spacecraft models and magnetic control

• Local stability analysis

• Bifurcation analysis

• Simulation results

• Concluding remarks and future works
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Relatore
Note di presentazione
I will spend the first part of the presentation introducing the problem,
Then I will use the local stability analysis techniques,
And then, trough bifurcation analysis, I will deduce some global characteristics of the local desired controlled equilibrium

I will then show you some simulations results and get the conclusions. 
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Introduction to magnetic attitude control

 Attitude control plays a 
fundamental role in the operation 
of a satellite.

 For conventional actuators (e.g., 
reaction wheels, thrusters) 
considerable work has been done 
for both the local and the global 
control problems.

 On the other hand, while 
magnetic coils have been 
extensively used in practice, 
limited attention has been 
dedicated to the underlying 
theoretical issues.
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Relatore
Note di presentazione
What is the problem? 
If we have a satellite, it’s attitude control plays a fundamental role.

There are substantially three types of actuators used in satellite attitude control: 
thrusters, that generate forces in order to keep attitude, 
reaction wheels, that works trough the conservation of the angular moment,
and magnetic coils. 

The first two have been extensively studied theoretically, while the third one has been extensivelly used, due to the low cost of product and mantain this type of actuators, but theoretically there is a lot of work to be done.
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4Introduction to magnetic attitude control

Critical issues in magnetic control

Magnetic actuators are intrinsically time-varying

It is not possible to provide three independent control torques at each 
time instant

THANKS TO: UNIVERSITY OF MICHIGAN – CUBESAT PROGRAM

Attitude stabilisation is possible 
because on average the 
system possesses strong 
controllability properties for a 
wide range of orbit inclinations

Relatore
Note di presentazione
The main theoretical problem in magnetic control is the intrinsic time-varyiability of the problem. 
In fact magnetic actuators are based on the magnetic field of the earth, that substantially changes along the orbit of the satellite (you see, in this figure, along an orbit it have a value and it’s opposite).

Moreover, at each time instant it is possible to provide only the control torques orthogonal to the magnetic vector field, and so, if the satellite would be in positions in which the magnetic vector field does not vary, it would be impossible to control its attitude trough magnetic coils. 

Instead, along the orbit, attitue stabilization becomes possible, since on average the system possesses trong controllability properties. So the first theoretical problem has been solved, ...
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5Geomagnetic field

The Earth's magnetic field can be easily
 modelled: see, e.g., the International Geomagnetic Reference

Field model;
 measured on board;

• MITA spacecraft 
• Near polar (87o inclination);
• Altitude of 450 km; 
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Relatore
Note di presentazione
...for the time varyability it has to be said that the Earth’s magnetic field can be easily both modeled and measured on board.
Here I show you the simulation of a particular orbit. 
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The magnetic attitude control torques
Tcoils are given by:

where:


 mcoils 2 R3 magnetic dipoles for the 
three current-driven coils

Magnetic torques
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 b(t) 2 R3 Earth magnetic field versor (body frame), given by

 q is an attitude parametrization (quaternion) 
 A(q) is the attitude matrix
 b0(t) is the magnetic field vector in orbit coordinates

Relatore
Note di presentazione
It is also easy model the Magnetic torques used for the attitude control in satellite cordinates, through Euler equations. 

Proceeding in this way we obtain a set of periodically forced (from this b0 that varies along the orbit) non-linear equations. 






where A(q) is the spacecraft attitude matrix (the parametrisation used for the attitude kinematics is the one given by the four Euler quaternions) and b0(t) is the magnetic field versor in orbit coordinates. 
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7Magnetic attitude control: discussion

Advantages of magnetic control:

 low cost actuators;

 no moving parts (e.g., reaction wheels);

 low power consumption, no fuel (e.g., thrusters).

Limitations:

 viable only for Low Earth Orbit spacecraft (<1000 km altitude);

 it is not possible to full control the spacecraft at each time instant;

 controller analysis and design is more complicated.

Relatore
Note di presentazione
Just to conclude this introduction on the problem, magnetic controls have been extensivelly used for satellite attitude control, due to its low cost, in buinging and manteinance, and consumption.

The main limitations are due to the fact that we are using the Earth Magnetic vector field, and so we must be not to far from the earth, and the controller syntesis is more complicate. Obviously in this presentation we want to go trough those last two limitations.
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The overall dynamics is given by the kinematics of the spacecraft

and by the attitude dynamics

Problems:
 show that the system is controllable on average;
 work out a globally stabilizing control law.

Model for rigid body angular motion
(body frame)

Relatore
Note di presentazione
The overall dynaics of the spacecraft is given by the nonlinear kynematics equations

And by the non-linear attitude dynamics, as previously get.

The first problem is to show that the system is controllable on average and to work out a stabilizing control law. 
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9State feedback regulation

For the projection-based control law

using averaging techniques it is possible to obtain both results, i.e.,
 the system is controllable on average if

 there exist εF >0, kp >0, kv>0, such that for any 0<ε <εF the control law
renders the equilibrium (q,ω)=([0 0 0 1]T,0) of the closed loop system 
locally exponentially stable. 

 moreover, all trajectories of the closed loop system converge to the 
points (q,ω) = (§ [0 0 0 1]T,0).

Relatore
Note di presentazione
This was already been done in a previous work of Marco Lovera, one of the authors, that has obtained a theorem in which a globally stabilizing control law for the trivial equilibrium that has attitude alligned along the earth has been provided for a suitable choice of a strength parameter epsilon. 

Here we work out, trough non-linear analysis instruments, the answer  to the question: «what is a suitable shoice for epsilon?»
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10Sketch of proof

Introduce the coordinate transformation

Set

and write the equations (in the inertial body frame) of motion as

consider the averaged system

and use the Lyapunov function
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11State feedback regulation

For the projection-based control law

using averaging techniques it is possible to obtain both results, i.e.,
 the system is controllable on average if

 there exist εF >0, kp >0, kv>0, such that for any 0<ε <εF the control law
renders the equilibrium (q,ω)=([0 0 0 1]T,0) of the closed loop system 
locally exponentially stable. 

 moreover, all trajectories of the closed loop system converge to the 
points (q,ω) = (§ [0 0 0 1]T,0).

But which is a suitable choice for ε?

Relatore
Note di presentazione
This was already been done in a previous work of Marco Lovera, one of the authors, that has obtained a theorem in which a globally stabilizing control law for the trivial equilibrium that has attitude alligned along the earth has been provided for a suitable choice of a strength parameter epsilon. 

Here we work out, trough non-linear analysis instruments, the answer  to the question: «what is a suitable shoice for epsilon?»
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12Local stability analysis

First approach: analyze the local stability of the 
(q,ω)=([0 0 0 1]T,0) 
equilibrium of the closed loop periodically forced system.

Step 1: Linearize the closed-loop system around the equilibrium

Step 2: Study the stability of
this linear time-periodic 
system through 
Floquet theory

Relatore
Note di presentazione
The first approach one can follow is to analyze the periodically forced system linearizing it around the trivial equilibrium. 

So after the linearization the system gets this form

And trough Floquet theory it is possible to compute for a given satellite the non-trivial multipliers of this system for different values of the epsilon parameter.

This lead us to find a first boundary in epsilon values for which the trivial equilibrium is locally stable looking at multipliers or characteristic exponents value.

The question is now «What happens when local stability is lost?»
Is it possible to understand what happen in the neighborhood of the equilibrium when it lose its stability? 
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13Simulation example: attitude acquisition

Considered satellite: 

 Inertia matrix I=diag[27, 17, 25] Nm;
 Near polar (87o inclination) orbit with altitude of 450 km and orbit 

period of about 5600 s.

ε = 0.001
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14Local stability analysis

First approach: analyze the local stability of the 
(q,ω)=([0 0 0 1]T,0) 
equilibrium of the closed loop periodically forced system.

Step 1: Linearize the closed-loop system around the equilibrium

Step 2: Study the stability of
this linear time-periodic 
system through 
Floquet theory

What happens when local 
stability is lost?

Relatore
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The first approach one can follow is to analyze the periodically forced system linearizing it around the trivial equilibrium. 

So after the linearization the system gets this form

And trough Floquet theory it is possible to compute for a given satellite the non-trivial multipliers of this system for different values of the epsilon parameter.

This lead us to find a first boundary in epsilon values for which the trivial equilibrium is locally stable looking at multipliers or characteristic exponents value.

The question is now «What happens when local stability is lost?»
Is it possible to understand what happen in the neighborhood of the equilibrium when it lose its stability? 
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In our case we have only an eigenvalue
that becomes unstable. 
This means that we can analyze what
happens in a neighborhood of the 
bifurcation by studying a one dimensional
system (center manifold theorem)

CHANGE IN LOCAL STABILITY → 
(LOCAL) BIFURCATION

15

εF - ∆ε

εF

εF + ∆ε

Nonlinear term analysis shows that at the bifurcation the equilibrium is unstable

Thus, near the bifurcation the stationary solution is not globally stable

Relatore
Note di presentazione
Ok, come back to our case.
In our case we have only an eigenvalue that becomes unstable.

This means that we can analyze what happens in a neighborhood of the bifurcation by studing a one dimensional system, thanks to the center manifold reduction theorem. 

If we look at nonlinear term at the bifurcation we discover that the trivial equilibrium is unstable 

After the bifurcation we know that the equilibrium is unstable, and so no invariant is present (there is no difference between the bifurcation and after the bifurcation.

Before the bifurcation instead, the trivial equilibrium is stable: so, since far from the equilibrium things cannot be changed for a narrow change of the parameter, we deduce that 

Two unstable equilibria (one on the left and one on the right) are present before the bifurcation.

Thus, near the bifurcation the stationary solution is not globally stable.
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Setting up the system for numerical continuation 16

System equations read:

Problems for numerical continuation:
• The system is time-dependent (periodically forced)
• The system live in SO3 (||q|| = 1)
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Setting up the system for numerical continuation 17

Problems for numerical continuation:
• The system is time-dependent (periodically forced)

We can therefore substitute the periodic dependence introducing two
variables that are solution of the sistem
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Setting up the system for numerical continuation 18

Problems for numerical continuation:
 The system live in SO3 (||q|| = 1)
System equations are written in order to maintain q2 = 1, since

but this manifold is not attractive (there is an eigenvalue equal to 0!). 
We can so:
 Exploit the algebraic constrain in order to eliminate a variable

 Make the manifold q2 = 1 stable introducing a dumping
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Try it with MatCont
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Using continuation techniques it is possible to analyze the solutions born at 
the bifurcation, obtaining a diagram of the invariants for different values of
the parameter.

Numerical analysis results 20

Note: since the satellite 
moves along the orbit all
the invariants (even the 
stationary one) are limit
cycles.

Relatore
Note di presentazione
It is possible, using continuation techniques, to analyze the solutions that born at the bifurcation, obtaining a diagram of the invariants present for different epsilon values. 

Proceeding in this way we obtain this figure, in which I show the maximim of one quaternion coordinate of the solution versus the parameter, solid when the invariant is stable, dotted when it is unstable. You see that we have obtained in this way the same results obtained through Floquet analysis for the trivial solution, i.e., that before the bifurcation the trivial solution is stable while the unstable solution is unstable. 
Notice also that both the unstable solutions that born at the bifurcation bend at two different previous parameter values (and we expect it, because the theorem says that if epsilon is small enough the control global stabilize the trivial solution), and that the two unstable borned solutions become stable after this bifurcation. 
So, with this analysis, we get a newer and stricter espilon value in order to get global stability of the desired operating point.  
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Numerical analysis results 21
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In fact, if we take epsilon in the window between the two bifurction we have found we see that the system is multi-stable, and we get to different operating regimes depending on the initial condition, or through a particularly big noise. 

Here I’m showing you the projection of three trajectories in the angular-velocity subspace that depart from three different initial points that lead to the basin of attraction of each attractor.
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Numerical analysis results 22

L1 = 0.00001456
L2 = - 0.0000743
L3 = - 0.0642956
…

Relatore
Note di presentazione
Increasing further the parameter value we get that also the non-trivial solutions become unstable, this time through the so-called neimark-sacker bifurcation. 

This bifurcation is like the one I’ve shown you some slides ago, in which a limit cycle is involved, and in fact, a stable torus born at this bifurcation, and the system begin to work in a quasi-periodic regime.  

This can be easily seen trough a Poincarè section, in which is clear to see the limit cycle obtained on the map, i.e., the section of the stable torus on which system works.



Bifurcation analysis of controlled spacecraft model

Numerical analysis results 23

L1 = 0.0245456
L2 = - 0.0000521
L3 = - 0.0349725
… ε = 0.03

Relatore
Note di presentazione
Increasing further the parameter value we get that also the non-trivial solutions become unstable, this time through the so-called neimark-sacker bifurcation. 

This bifurcation is like the one I’ve shown you some slides ago, in which a limit cycle is involved, and in fact, a stable torus born at this bifurcation, and the system begin to work in a quasi-periodic regime.  

This can be easily seen trough a Poincarè section, in which is clear to see the limit cycle obtained on the map, i.e., the section of the stable torus on which system works.
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• A control law for magnetic attitude regulation developed in previous work 
has been considered

• The control law provides global convergence to the desired equilibrium if 
the control strength is small enough

• Local stability of the desired equilibrium has been analysed and an upper 
bound to the control strength has been worked out

• Nonlinear analysis has been applied to better understand the closed-loop
system, finding:
• multistability
• a new (more restrictive) bound to ensure global stability
• quasi-periodic and chaotic behaviors if the control strength is too

large.

Conclusions 24
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