Introduction to numerical bifurcation analysis

Fabio Della Rossa

Analyze the prey-predator Rosenzweig-MacArthur model when a constant super-predator is present:

$$\dot{x}_1 = rx_1(1 - \frac{x_1}{K}) - \frac{a_1x_1}{b_1 + x_1}x_2$$
$$\dot{x}_2 = e\frac{ax_1}{b + x_1}x_2 - mx_2 - \frac{a_2x_2}{b_2 + x_2}x_3$$

where x_1 , and x_2 are the resource and predator densities, $r = e = a_2 = 1$, $a_1 = 5/3$, $b_1 = 1/3$, $b_2 = 1/2$, m = 0.12, and x_3 is the super-predator density.

Analyze the different behavior of the model with respect to the resource richness K and to the super-predator density x_3 .

Specifically:

- Interpret the model and discuss its properties (e.g., meaning of variables, positivity of the model, ...).
- Analyze through simulation (done with MatCont of PPlane) the behavior of the model for fixed K, and increasing x_3 (suggested values: 0, 0.5, 0.57, 0.6, 0.67, 0.69, 0.7, 0.75).
- Generate a bifurcation diagram in the space (x_3, x_1, x_2) in a rich environment (K = 1) and in a poor environment (K = 0.2).
- Generate a two-parameter bifurcation diagram for $(x_3, K) = [0, 1] \times [0, 2]$.