Simulations with MatCont

Fabio Della Rossa

Analyze the Rosenzweig-MacArthur model

$$
\begin{aligned}
\dot{x}_{1} & =r x_{1}\left(1-\frac{x_{1}}{K}\right)-\frac{a x_{1}}{b+x_{1}} x_{2} \\
\dot{x}_{2} & =e \frac{a x_{1}}{b+x_{1}} x_{2}-m x_{2}
\end{aligned}
$$

where x_{1}, and x_{2} are the prey and predator densities, $r=m=2 \pi, a=4 \pi, K=e=1$ and $b \in\{0.2,0.5,1.1\}$.

- Show that the model is positive, i.e. $\left(x_{1}(0), x_{2}(0)\right) \geq 0 \Rightarrow\left(x_{1}(t), x_{2}(t)\right) \geq 0$.
- Analyze the model dynamic in absence of predators $\left(x_{2}=0\right)$ and in absence of preys $\left(x_{1}=0\right)$.
- Locate the equilibria of the system, and discuss their stability through linearization.
- Let $b=0.2$, and sketch the trajectories of the system in the neighborhood of the equilibria.
- Discuss the existence of limit cycles.
- Sketch a possible full state portrait.
- Verify the obtained results using MatCont, and repeat the analysis for the different values of b.

Let now assume that the predation half saturation constant varies with a seasonality (this can happen due to a different ability of the preys to hide themselves from the predators), i.e.

$$
b=b_{0}\left(1+\varepsilon \sin \frac{\pi}{2} t\right)
$$

Simulate the system with MatCont ${ }^{1}$] and show that the asymptotic behaviour of the system is the one reported in the following table, for different values of $\left(b_{0}, \varepsilon\right)$:

	0.2	0.5	1.1
0	periodic	stationary	extinction
0.1	quasi-periodic	periodic	extinction
0.7	chaotic	chaotic	periodic

[^0]with $\left[x_{3}(0), x_{4}(0)\right]=[1,0]$, and substitute $\sin \omega t$ with variable x_{3}.

In particular

- show the projection of the attractor in the space $\left(x_{1}, x_{2}, \sin \frac{\pi}{2} t\right)$
- in the case $\left(b_{0}, \varepsilon\right)=(0.2,0.7)$ verify the sensitivity from initial condition by plotting two temporal series of x_{1} starting from close initial values.
- in the cases $\left(b_{0}, \varepsilon\right)=(0.2,0.7)$, and $\left(b_{0}, \varepsilon\right)=(0.5,0.4)$, analyse the Poincarè section ${ }^{2}$ and compute the Lyapunov Exponents \int^{3} f the attractor.

```
\mp@subsup{}{}{2}\mathrm{ To compute the Poincarè section of the attractor we need to simulate the system using the event detection}
feature of theODE package. Opening the system file generated by MatCont, define a new function that changes
sign by crossing the Poincarè Section. For example:
function [T,Y,TE,YE,IE] = poincare_section(odefun,event,tspan,y0)
t0=tspan(1);
t1=tspan(2);
options=[];
[T,Y] = ode45(odefun, [t0,t1/10],y0,options); % Leave the transient
options=odeset('Events',event);
[T,Y,TE,YE,IE] = ode45(odefun,[t1/10,t1],Y(end,:),options);
figure, line(YE(:,1),YE(:,2),'linestyle','none','marker','.','markersize',10)
function [value,isterminal,direction]=events(t,x,KK,RR,AA,B0,EE,DD,epsilon)
value=x(3);
isterminal=0;
direction=1;
function dydt = fun_eval(t,kmrgd,KK,RR,AA,B0,EE,DD,epsilon)
dydt=...;
```

```
* A function that computes the Lyapunov exponents:
```

* A function that computes the Lyapunov exponents:
function [Texp,Lexp]=lexp(odefun,jacobian,tspan,y0)
function [Texp,Lexp]=lexp(odefun,jacobian,tspan,y0)
stept=0.2;
stept=0.2;
ioutp=100;
ioutp=100;
n1=length(y0); n2=n1*(n1+1);
n1=length(y0); n2=n1*(n1+1);
nit = round(diff(tspan)/stept); % Number of steps
nit = round(diff(tspan)/stept); % Number of steps
% Memory allocation
% Memory allocation
y=zeros(n2,1); cum=zeros(n1,1);
y=zeros(n2,1); cum=zeros(n1,1);
Lexp=zeros(n1,nit); Texp=zeros(1,nit);
Lexp=zeros(n1,nit); Texp=zeros(1,nit);
% Initial values
% Initial values
rhs_ext=@(t,x) [odefun(t,x);reshape(jacobian(t,x)*reshape(x(n1+1:n2),n1,n1),n2-n1,1)];
rhs_ext=@(t,x) [odefun(t,x);reshape(jacobian(t,x)*reshape(x(n1+1:n2),n1,n1),n2-n1,1)];
y=[y0(:); reshape (eye(n1),n1^2,1)];
y=[y0(:); reshape (eye(n1),n1^2,1)];
t=tspan(1);
t=tspan(1);
% Main loop
% Main loop
for ITERLYAP=1:nit
for ITERLYAP=1:nit
[T,Y] = ode45(rhs_ext, [t t+stept],y); % Solutuion of extended ODE system
[T,Y] = ode45(rhs_ext, [t t+stept],y); % Solutuion of extended ODE system
t=t+stept; y=Y(size(Y,1),:); % Take the last computed point
t=t+stept; y=Y(size(Y,1),:); % Take the last computed point
[Q,R]=qr(reshape(y(n1+1:n2),n1,n1)); % Construct new orthonormal basis
[Q,R]=qr(reshape(y(n1+1:n2),n1,n1)); % Construct new orthonormal basis
y(n1+1:n2)=Q(:);
y(n1+1:n2)=Q(:);
cum=cum+log(abs(diag(R))); % Compute lyapunov coefficient
cum=cum+log(abs(diag(R))); % Compute lyapunov coefficient
lp=cum/(t-tspan(1)); % normalize exponent
lp=cum/(t-tspan(1)); % normalize exponent
Lexp(:,ITERLYAP)=lp; Texp(ITERLYAP)=t;
Lexp(:,ITERLYAP)=lp; Texp(ITERLYAP)=t;
if (mod(ITERLYAP,ioutp)==0)
if (mod(ITERLYAP,ioutp)==0)
fprintf('t=%6.4f ',t); fprintf('%10.6f ',lp); fprintf('\n');
fprintf('t=%6.4f ',t); fprintf('%10.6f ',lp); fprintf('\n');
end;
end;
end;
end;
figure, plot(Texp,Lexp)

```
figure, plot(Texp,Lexp)
```


[^0]: ${ }^{1}$ Notice that MatCont can only analyze autonomus systems, so we need to generate the sinosoidial forcing by means of the oscillatior

 $$
 \begin{aligned}
 & \dot{x}_{3}=x_{3}-\omega x_{4}-\left(x_{3}^{2}+x_{4}^{2}\right) x_{3} \\
 & \dot{x}_{4}=\omega x_{3}+x_{4}-\left(x_{3}^{2}+x_{4}^{2}\right) x_{4}
 \end{aligned}
 $$

