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Analyze the Rosenzweig-MacArthur model

ẋ1 = rx1(1−
x1
K

)− ax1
b+ x1

x2

ẋ2 = e
ax1
b+ x1

x2 −mx2

where x1 , and x2 are the prey and predator densities, r = m = 2π, a = 4π, K = e = 1 and
b ∈ {0.2, 0.5, 1.1}.

� Show that the model is positive, i.e. (x1(0), x2(0)) ≥ 0⇒ (x1(t), x2(t)) ≥ 0.

� Analyze the model dynamic in absence of predators (x2 = 0) and in absence of preys
(x1 = 0).

� Locate the equilibria of the system, and discuss their stability through linearization.

� Let b = 0.2, and sketch the trajectories of the system in the neighborhood of the equilibria.

� Discuss the existence of limit cycles.

� Sketch a possible full state portrait.

� Verify the obtained results using MatCont, and repeat the analysis for the different values
of b.

Let now assume that the predation half saturation constant varies with a seasonality (this
can happen due to a different ability of the preys to hide themselves from the predators), i.e.

b = b0(1 + ε sin
π

2
t).

Simulate the system with MatCont1 and show that the asymptotic behaviour of the system is
the one reported in the following table, for different values of (b0, ε):

H
HHH

HHε
b0 0.2 0.5 1.1

0 periodic stationary extinction

0.1 quasi-periodic periodic extinction

0.7 chaotic chaotic periodic

1 Notice that MatCont can only analyze autonomus systems, so we need to generate the sinosoidial forcing by
means of the oscillatior

ẋ3 = x3 − ωx4 − (x2
3 + x2

4)x3

ẋ4 = ωx3 + x4 − (x2
3 + x2

4)x4

with [x3(0), x4(0)] = [1, 0], and substitute sinωt with variable x3.
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In particular

� show the projection of the attractor in the space (x1, x2, sin
π
2 t)

� in the case (b0, ε) = (0.2, 0.7) verify the sensitivity from initial condition by plotting two
temporal series of x1 starting from close initial values.

� in the cases (b0, ε) = (0.2, 0.7), and (b0, ε) = (0.5, 0.4), analyse the Poincarè section2and
compute the Lyapunov Exponents3of the attractor.

2 To compute the Poincarè section of the attractor we need to simulate the system using the event detection
feature of theODE package. Opening the system file generated by MatCont, define a new function that changes
sign by crossing the Poincarè Section. For example:
function [T,Y,TE,YE,IE] = poincare section(odefun,event,tspan,y0)
t0=tspan(1);
t1=tspan(2);
options=[];
[T,Y] = ode45(odefun,[t0,t1/10],y0,options); % Leave the transient
options=odeset('Events',event);
[T,Y,TE,YE,IE] = ode45(odefun,[t1/10,t1],Y(end,:),options);
figure, line(YE(:,1),YE(:,2),'linestyle','none','marker','.','markersize',10)

function [value,isterminal,direction]=events(t,x,KK,RR,AA,B0,EE,DD,epsilon)
value=x(3);
isterminal=0;
direction=1;

function dydt = fun eval(t,kmrgd,KK,RR,AA,B0,EE,DD,epsilon)
dydt=...;

3 A function that computes the Lyapunov exponents:
function [Texp,Lexp]=lexp(odefun,jacobian,tspan,y0)
stept=0.2;
ioutp=100;
n1=length(y0); n2=n1*(n1+1);
nit = round(diff(tspan)/stept); % Number of steps
% Memory allocation
y=zeros(n2,1); cum=zeros(n1,1);
Lexp=zeros(n1,nit); Texp=zeros(1,nit);
% Initial values
rhs ext=@(t,x) [odefun(t,x);reshape(jacobian(t,x)*reshape(x(n1+1:n2),n1,n1),n2-n1,1)];
y=[y0(:);reshape(eye(n1),n1ˆ2,1)];
t=tspan(1);

% Main loop
for ITERLYAP=1:nit
[T,Y] = ode45(rhs ext,[t t+stept],y); % Solutuion of extended ODE system
t=t+stept; y=Y(size(Y,1),:); % Take the last computed point
[Q,R]=qr(reshape(y(n1+1:n2),n1,n1)); % Construct new orthonormal basis
y(n1+1:n2)=Q(:);
cum=cum+log(abs(diag(R))); % Compute lyapunov coefficient
lp=cum/(t-tspan(1)); % normalize exponent
Lexp(:,ITERLYAP)=lp; Texp(ITERLYAP)=t;
if (mod(ITERLYAP,ioutp)==0)
fprintf('t=%6.4f ',t); fprintf('%10.6f ',lp); fprintf('\n');
end;
end;
figure, plot(Texp,Lexp)
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